Bài 4.41 trang 103 SGK Toán 11 tập 1 - Kết nối tri thức

Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau: a) (SAD) và (SBC) b) (SAB) và (SCD) c) (SAC) và (SBD)


Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CDAB < CD. Xác định giao tuyến của hai mặt phẳng sau:

a) (SAD) và (SBC)

b) (SAB) và (SCD)

c) (SAC) và (SBD)

Phương pháp giải - Xem chi tiết

-          Tìm hai điểm chung A và B của \(\alpha \) và \(\beta \).

-          Đường thẳng AB là giao tuyến cần tìm.

Lời giải chi tiết

a) Gọi giao điểm của AD BC K.

Ta có: SK cùng thuộc mp(SAD) (SBC).

Vậy SK là giao tuyến của (SAD) và (DBC).

b) (SAB) và (SCD) có AB // CD S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB CD.

c) Gọi O là giao điểm của AC BD suy ra O thuộc giao tuyến của (SAC) và (SBC)

Suy ra SO là giao tuyến của (SAC) và (SBD).



Bài học liên quan

Từ khóa phổ biến