Bài 29 trang 96 SGK Hình học 10 Nâng cao
Tìm tọa độ các giao điểm của hai đường tròn sau đây
Đề bài
Tìm tọa độ các giao điểm của hai đường tròn sau đây
\(\eqalign{
& (C):{x^2} + {y^2} + 2x + 2y - 1 = 0, \cr
& (C'):{x^2} + {y^2} - 2x + 2y - 7 = 0. \cr} \)
Phương pháp giải - Xem chi tiết
Giải hệ phương trình tọa độ giao điểm và kết luận.
Lời giải chi tiết
Tọa độ giao điểm của hai đường tròn thỏa mãn hệ phương trình:
\(\left\{ \begin{array}{l}
{x^2} + {y^2} + 2x + 2y - 1 = 0\,\,\,(1)\\
{x^2} + {y^2} - 2x + 2y - 7 = 0 \,\,\, (2)
\end{array} \right.\)
Lấy (1) trừ (2) vế với vế ta được:
\(4x + 6 = 0 \Leftrightarrow x = - {3 \over 2}.\)
Thay \(x = - {3 \over 2}\) vào (1) ta được:
\({9 \over 4} + {y^2} - 3 + 2y - 1 = 0 \) \(\Leftrightarrow {y^2} + 2y - {7 \over 4} = 0\)
\(\Leftrightarrow y = - 1 \pm {{\sqrt {11} } \over 2}\)
Tọa độ hai giao điểm của (C) và (C’) là:
\(\left( { - {3 \over 2}; - 1 - {{\sqrt {11} } \over 2}} \right);\,\,\,\left( { - {3 \over 2}; - 1 + {{\sqrt {11} } \over 2}} \right)\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 29 trang 96 SGK Hình học 10 Nâng cao timdapan.com"