Bài 24 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao
Cho tam giác ABC và điểm G. Chứng minh rằng
Cho tam giác \(ABC\) và điểm \(G\). Chứng minh rằng
LG a
Nếu \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) thì \(G\) là trọng tâm tam giác \(ABC\)
Lời giải chi tiết:
Gọi \({G_1}\) là trọng tâm tam giác \(ABC\). Từ đó, ta có \(\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} = \overrightarrow 0 .\)
Theo giả thiết, \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\(\eqalign{
& \Rightarrow\overrightarrow {G{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}B} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}C} = \overrightarrow 0 \cr
& \Rightarrow 3\overrightarrow {G{G_1}} + \left( {\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow {0} \cr& \Rightarrow 3\overrightarrow {G{G_1}} = \overrightarrow 0 \Rightarrow \overrightarrow {G{G_1}} = \overrightarrow 0 \cr&\Rightarrow \,G \equiv {G_1} \cr} \)
Cách khác:
Gọi M là trung điểm BC ta có:
\(\begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {GM} = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {GA} = - 2\overrightarrow {GM} \end{array}\)
Do đó A, G, M thẳng hàng; G nằm giữa A, M và \(AG = 2GM \Rightarrow AG = \dfrac{2}{3}AM\)
Vậy G là trọng tâm tam giác.
LG b
Nếu có điểm \(O\) sao cho \(\overrightarrow {OG} = \dfrac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\) thì \(G\) là trọng tâm tam giác \(ABC\).
Lời giải chi tiết:
Gọi \( {G_1}\) là trọng tâm tam giác \(ABC\).
Từ đó, ta có \(\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} = \overrightarrow 0 .\)
\(\eqalign{
& \overrightarrow {OG} = {1 \over 3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) \cr
& = {1 \over 3}\left( {3\overrightarrow {O{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) \cr& = \frac{1}{3}\left( {3\overrightarrow {O{G_1}} + \overrightarrow 0 } \right)= \overrightarrow {O{G_1}} \cr& \Rightarrow \,G \equiv {G_1} \cr} \)
Cách khác:
Ta có:
\(\begin{array}{l}\overrightarrow {OG} = \dfrac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\\ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} \\ \Leftrightarrow \overrightarrow {OG} + \overrightarrow {GA} + \overrightarrow {OG} + \overrightarrow {GB} + \overrightarrow {OG} + \overrightarrow {GC} = 3\overrightarrow {OG} \\ \Leftrightarrow 3\overrightarrow {OG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = 3\overrightarrow {OG} \\ \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \end{array}\)
Vậy G là trọng tâm tam giác (theo câu a).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 24 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao timdapan.com"