Bài 23 trang 107 SGK Toán 11 tập 2 - Kết nối tri thức

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết rằng ba số \({u_1},{u_4}\) và \({u_7}\)


Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết rằng ba số \({u_1},{u_4}\) và \({u_7}\) lần lượt là các số hạng thứ nhất, thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0\). Hãy tìm công bội \(q\) của cấp số nhân đó.

Phương pháp giải - Xem chi tiết

- Số hạng tổng quát của cấp số nhân \({u_n} = {u_1}{q^{n - 1}}\)

- Số hạng tổng quát của cấp số cộng \({u_n} = {u_1} + \left( {n - 1} \right)d\)

Lời giải chi tiết

Cấp số nhân \(\left( {{u_n}} \right)\) có \({u_4} = {u_1}.{q^3};{u_7} = {u_1}.{q^6}\)

Vì ba số \({u_1},{u_4}\) và \({u_7}\) lần lượt là các số hạng thứ nhất, thứ hai và thứ mười của một cấp số cộng có công sai d nên ta có

\(\left\{ \begin{array}{l}{u_4} = {u_1}{q^3} = {u_1} + d\\{u_7} = {u_1}{q^6} = {u_1} + 9d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^3} - 1} \right) = d\\{u_1}\left( {{q^6} - 1} \right) = 9d\end{array} \right.\)

Do \(d \ne 0\) nên \(9 = \frac{{9d}}{d} = \frac{{{u_1}\left( {{q^6} - 1} \right)}}{{{u_1}\left( {{q^3} - 1} \right)}} = {q^3} + 1 \Leftrightarrow {q^3} = 8 \Leftrightarrow q = 2\)



Bài giải liên quan

Bài học liên quan

Từ khóa phổ biến