Bài 2.2 trang 81 SBT hình học 10

Giải bài 2.2 trang 81 sách bài tập hình học 10. Tính giá trị lượng giác của các góc sau đây:...


Tính giá trị lượng giác của các góc sau đây:

LG a

\({120^0}\)   

Phương pháp giải:

Sử dụng giá trị lượng giác của các góc đặc biệt từ \({0^0}\) đến \({180^0}\).

Xem chi tiết tại đây.

Giải chi tiết:

\(\sin {120^0} = \sin \left( {{{180}^0} - {{120}^0}} \right)\)\( = \sin {60^0} = \dfrac{{\sqrt 3 }}{2};\)

\(cos{120^0} =  - \cos \left( {{{180}^0} - {{120}^0}} \right)\) \( =  - \cos {60^0} =  - \dfrac{1}{2};\)

\(\tan {120^0} =  - \tan {60^0} =  - \sqrt 3 ;\) \(\cot {120^0} =  - \cot {60^0} =  - \dfrac{1}{{\sqrt 3 }}\)


LG b

\({150^0}\)

Phương pháp giải:

Sử dụng giá trị lượng giác của các góc đặc biệt từ \({0^0}\) đến \({180^0}\).

Xem chi tiết tại đây.

Giải chi tiết:

\(\sin {150^0} = \sin {30^0} = \dfrac{1}{2};\)\(\cos {150^0} =  - \cos {30^0} =  - \dfrac{{\sqrt 3 }}{2};\)

\(\tan {150^0} =  - \tan {30^0} =  - \dfrac{{\sqrt 3 }}{3};\) \(cot{150^0} =  - \cot {30^0} =  - \sqrt 3 \)


LG c

\({135^0}\)

Phương pháp giải:

Sử dụng giá trị lượng giác của các góc đặc biệt từ \({0^0}\) đến \({180^0}\).

Xem chi tiết tại đây.

Giải chi tiết:

\(\sin {135^0} = \sin {45^0} = \dfrac{{\sqrt 2 }}{2};\)\(\cos {135^0} =  - \cos {45^0} =  - \dfrac{{\sqrt 2 }}{2};\)

\(\tan {135^0} =  - \tan {45^0} =  - 1;\) \(\cot {135^0} =  - \cot {45^0} =  - 1\)



Từ khóa phổ biến