Bài 16 trang 170 Tài liệu dạy – học Toán 7 tập 1

Giải bài tập Cho tam giác MDN nhọn. Kẻ DE vuông góc với MN


Đề bài

Cho tam giác MDN nhọn. Kẻ DE vuông góc với MN \((E \in MN).\)  Trên tia đối của tia ED lấy điểm F sao cho EF = ED. Chứng minh rằng :

a) \(\Delta DME = \Delta FME.\)

b) DN = FN.

Lời giải chi tiết

 

a)Xét tam giác DME và FME có:

DE = FE (gt)

\(\widehat {DEM} = \widehat {FEM}( = {90^0})\)

ME là cạnh chung.

Do đó: \(\Delta DME = \Delta FME(c.g.c)\)

b) Xét tam giác DEN và FEN ta có:

DE = FE (gt)

\(\widehat {DEN} = \widehat {FME}( = {90^0})\)

EN là cạnh chung.

Do đó: \(\Delta DEN = \Delta FEN(c.g.c) \Rightarrow DN = FN.\)



Từ khóa phổ biến