Giải bài tập 6 trang 54 SGK Toán 9 tập 1 - Cánh diều

Tính độ dài cạnh huyền của mỗi tam giác vuông trong Hình 2.


Đề bài

Tính độ dài cạnh huyền của mỗi tam giác vuông trong Hình 2. 

Phương pháp giải - Xem chi tiết

Áp dụng định lí Py – ta – go cùng căn bậc hai để giải bài toán.

Lời giải chi tiết

\(O{A_2} = \sqrt {1_{}^2 + 1_{}^2}  = \sqrt 2 \).

\(OA_3^{} = \sqrt {\left( {\sqrt 2 } \right)_{}^2 + 1_{}^2}  = \sqrt 3 \).

\(OA_4^{} = \sqrt {\left( {\sqrt 3 } \right)_{}^2 + 1_{}^2}  = 2\).

\(OA_5^{} = \sqrt {2_{}^2 + 1_{}^2}  = \sqrt 5 \).

=> \(OA_n^{} = \sqrt n \).

\(OA_6^{} = \sqrt 6 ,\) \(OA_7^{} = \sqrt 7 ,OA_8^{} = \sqrt 8 ,\) \(OA_9^{} = 3,\) \(OA_{10}^{} = \sqrt {10} ,\) \(OA_{11}^{} = \sqrt {11} ,OA_{12}^{} = \sqrt {12} ,\) \(\,OA_{13}^{} = \sqrt {13} \), \(OA_{14}^{} = \sqrt {14} ,\) \(OA_{15}^{} = \sqrt {15} ,\) \(OA_{16}^{} = 4,\) \(OA_{17}^{} = \sqrt {17} \).



Bài học liên quan

Từ khóa phổ biến