Giải bài tập 5 trang 91 SGK Toán 9 tập 1 - Cánh diều

Trên mặt biển, khi khoảng cách \(AB\) từ ca nô đến chân tháp hải đăng là 250m, một người đứng trên tháp hải đăng đó nhìn về phía ca nô theo phương \(CA\) tạo với phương nằm ngang \(Cx\) một góc là \(\widehat {ACx} = 32^\circ \) (Hình 39). Tính chiều cao của tháp hải đăng (làm tròn kết quả đến hàng phần mười của mét), biết \(AB//Cx\) và độ cao từ tầm mắt của người đó đến đỉnh tháp là 3,2m.


Đề bài

Trên mặt biển, khi khoảng cách \(AB\) từ ca nô đến chân tháp hải đăng là 250m, một người đứng trên tháp hải đăng đó nhìn về phía ca nô theo phương \(CA\) tạo với phương nằm ngang \(Cx\) một góc là \(\widehat {ACx} = 32^\circ \) (Hình 39). Tính chiều cao của tháp hải đăng (làm tròn kết quả đến hàng phần mười của mét), biết \(AB//Cx\) và độ cao từ tầm mắt của người đó đến đỉnh tháp là 3,2m. 

Phương pháp giải - Xem chi tiết

Dựa vào tỉ số lượng giác để giải bài toán.

Lời giải chi tiết

Do \(AB//Cx\) nên \(\widehat {ACx} = \widehat {CAB} = 32^\circ \) (hai góc cùng nằm ở vị trí so le trong).

Xét tam giác \(ACB\) vuông tại \(B\), ta có:

\(BC = AB.\tan \widehat {CAB} = 250.\tan 32^\circ  \approx 156,2\left( m \right)\).

Vậy chiều cao của tháp hải đăng khoảng 156,2m.

Bài giải tiếp theo



Bài học liên quan

Từ khóa phổ biến