Giải bài tập 4 trang 60 SGK Toán 9 tập 2 - Cánh diều

Ra đa của một máy bay trực thăng theo dõi chuyển động của một ô tô trong 10 phút, phát hiện rằng tốc độ v (km/h) của ô tô thay đổi phụ thuộc vào thời gian t (phút) bởi công thức \(v = 3{t^2} - 30t + 135\). a) Tính tốc độ của ô tô khi \(t = 5.\) b) Tính giá trị của t khi tốc độ ô tô bằng 120 km/h theo đơn vị phút và làm tròn kết quả đến hàng đơn vị.


Đề bài

Ra đa của một máy bay trực thăng theo dõi chuyển động của một ô tô trong 10 phút, phát hiện rằng tốc độ v (km/h) của ô tô thay đổi phụ thuộc vào thời gian t (phút) bởi công thức \(v = 3{t^2} - 30t + 135\).

a) Tính tốc độ của ô tô khi \(t = 5.\)

b) Tính giá trị của t khi tốc độ ô tô bằng 120 km/h theo đơn vị phút và làm tròn kết quả đến hàng đơn vị.

Phương pháp giải - Xem chi tiết

a) Thay \(t = 5\) vào phương trình để tìm v.

b) Thay giá trị của v = 120 km/h vào phương trình để tìm t.

Lời giải chi tiết

\(v = 3{t^2} - 30t + 135\)(1)

a) Vận tốc của ô tô khi \(t = 5\) là:

\(v = {3.5^2} - 30.5 + 135 = 60(km/h)\)

b) Để vận tốc ô tô bằng 120 km/h thì:

\(\begin{array}{l}120 = 3{t^2} - 30t + 135\\{t^2} - 10t + 5 = 0\\\Delta ' = {( - 5)^2} - 5.1 = 20 > 0\end{array}\)

Phương trình có 2 nghiệm phân biệt là

\({t_1} = \frac{{ - \left( { - 5} \right) + \sqrt {20} }}{1} \approx 9,47;{t_2} = \frac{{ - \left( { - 5} \right) - \sqrt {20} }}{1} \approx 0,53\)

Vì ra đa của máy bay trực thăng theo dõi chuyển động của ô tô trong 10 phút nên \(0 < t < 10.\)

Vậy để vận tốc ô tô bằng 120 km/h thì \(t \approx 9,47\) phút hoặc \(t \approx 0,53\) phút.



Từ khóa phổ biến