Giải bài tập 3.17 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa): a) \(\frac{{6\sqrt 2 + 3}}{{1 + 2\sqrt 2 }}\); b) \(\frac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}}\); c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }}\); d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x + \sqrt y }}\).


Đề bài

Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa):

a) \(\frac{{6\sqrt 2  + 3}}{{1 + 2\sqrt 2 }}\);

b) \(\frac{{\sqrt {15}  - \sqrt 5 }}{{\sqrt 3  - 1}}\);

c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }}\);

d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x  + \sqrt y }}\).

Phương pháp giải - Xem chi tiết

a) Phân tích tử số của phần thức thành \(3\left( {1 + 2\sqrt 2 } \right)\), từ đó rút gọn biểu thức.

b) Phân tích tử số của phần thức thành \(\sqrt 5 \left( {\sqrt 3  - 1} \right)\), từ đó rút gọn biểu thức.

c) Phân tích tử số của phần thức thành \(\sqrt m \left( {\sqrt m  - 2} \right)\), từ đó rút gọn biểu thức.

d) Phân tích tử số của phần thức thành \(\sqrt x \left( {3\sqrt x  + \sqrt y } \right)\), từ đó rút gọn biểu thức.

Lời giải chi tiết

a) \(\frac{{6\sqrt 2  + 3}}{{1 + 2\sqrt 2 }} = \frac{{3\left( {1 + 2\sqrt 2 } \right)}}{{1 + 2\sqrt 2 }} = 3\);

b) \(\frac{{\sqrt {15}  - \sqrt 5 }}{{\sqrt 3  - 1}} = \frac{{\sqrt 5 .\sqrt 3  - \sqrt 5 }}{{\sqrt 3  - 1}} = \frac{{\sqrt 5 \left( {\sqrt 3  - 1} \right)}}{{\sqrt 3  - 1}} = \sqrt 5 \);

c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }} = \frac{{\sqrt m \left( {\sqrt m  - 2} \right)}}{{ - \left( {\sqrt m  - 2} \right)}} =  - \sqrt m \);

d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x  + \sqrt y }} = \frac{{\sqrt x \left( {3\sqrt x  + \sqrt y } \right)}}{{3\sqrt x  + \sqrt y }} = \sqrt x \).



Bài học liên quan

Từ khóa phổ biến