Giải bài tập 3.14 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

Rút gọn rồi tính giá trị các biểu thức sau: a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \); b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \); c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \); d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).


Đề bài

Rút gọn rồi tính giá trị các biểu thức sau:

a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \);

b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a =  - 2,b =  - \sqrt 3 \);

c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a =  - 3,b = \sqrt 5 \);

d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x =  - 3,y = \sqrt 5 \).

Phương pháp giải - Xem chi tiết

a) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(x = \sqrt 2 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

b) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(a =  - 2,b =  - \sqrt 3 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

c) + Sử dụng kiến thức để rút gọn biểu thức: Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(a =  - 3,b = \sqrt 5 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

d) + Sử dụng kiến thức để rút gọn biểu thức: Với biểu thức A không âm và biểu thức B dương, ta có: \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\), \(\sqrt {{A^2}}  = \left| A \right|\).

+ Thay \(x =  - 3,y = \sqrt 5 \) vào biểu thức vừa rút gọn để tính giá trị biểu thức.

Lời giải chi tiết

a) Ta có:

\(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}}  = \sqrt {9{{\left( {2 - x} \right)}^4}}  = \sqrt {{{\left[ {3{{\left( {x - 2} \right)}^2}} \right]}^2}}  = 3{\left( {x - 2} \right)^2}\)

Với \(x = \sqrt 2 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(3{\left( {\sqrt 2  - 2} \right)^2} = 3{\left[ {\sqrt 2 \left( {1 - \sqrt 2 } \right)} \right]^2} = 6{\left( {1 - \sqrt 2 } \right)^2}\)

b) Ta có:

\(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}}  = \sqrt {4{a^2}{{\left( {3b + 1} \right)}^4}}  = \sqrt {{{\left[ {2a{{\left( {3b + 1} \right)}^2}} \right]}^2}}  = 2\left| a \right|{\left( {3b + 1} \right)^2}\)

Với \(a =  - 2,b =  - \sqrt 3 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(2.\left| { - 2} \right|.{\left( {3\sqrt 3  + 1} \right)^2} = 4{\left( {3\sqrt 3  + 1} \right)^2}\)

c) Ta có:

\({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}}  = {a^2}{b^2}.\sqrt {{{\left( {\frac{{3{b^2}}}{{5{a^3}}}} \right)}^2}}  = {a^2}{b^2}.\frac{{3{b^2}}}{{5{{\left| a \right|}^3}}} = \frac{{3{b^4}}}{{5\left| a \right|}}\).

Với \(a =  - 3,b = \sqrt 5 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(\frac{{3{{\left( {\sqrt 5 } \right)}^4}}}{{5.\left| { - 3} \right|}} = \frac{{{{3.5}^2}}}{{5.3}} = 5\).

d) Ta có:

\(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }} = \sqrt {\frac{{3{x^6}{y^4}}}{{27{x^2}{y^2}}}}  = \sqrt {\frac{{{x^4}{y^2}}}{9}}  = \sqrt {{{\left( {\frac{{{x^2}y}}{3}} \right)}^2}}  = \frac{{{x^2}\left| y \right|}}{3}\)

Với \(x =  - 3,y = \sqrt 5 \) thay vào biểu thức ta có giá trị của biểu thức là:

\(\frac{{{{\left( { - 3} \right)}^2}\left| {\sqrt 5 } \right|}}{3} = \frac{{{3^2}\sqrt 5 }}{3} = 3\sqrt 5 \).



Bài học liên quan

Từ khóa phổ biến