Giải bài tập 2.36 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Cho tứ diện ABCD, lấy hai điểm M, N thỏa mãn \(\overrightarrow {MB} + 2\overrightarrow {MA} = \overrightarrow 0 \) và \(\overrightarrow {NC} = 2\overrightarrow {DN} \). Hãy biểu diễn \(\overrightarrow {MN} \) theo \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \).


Đề bài

Cho tứ diện ABCD, lấy hai điểm M, N thỏa mãn \(\overrightarrow {MB}  + 2\overrightarrow {MA}  = \overrightarrow 0 \) và \(\overrightarrow {NC}  = 2\overrightarrow {DN} \). Hãy biểu diễn \(\overrightarrow {MN} \) theo \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Lời giải chi tiết

Ta có: \(\overrightarrow {MB}  + 2\overrightarrow {MA}  = \overrightarrow 0  \Rightarrow \overrightarrow {MB}  =  - 2\overrightarrow {MA} ,\overrightarrow {NC}  = 2\overrightarrow {DN}  \Rightarrow \overrightarrow {CN}  =  - 2\overrightarrow {ND} \)

Ta có: \(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN} \) (1)

\(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BC}  + \overrightarrow {CN}  =  - 2\overrightarrow {MA}  + \overrightarrow {BC}  - 2\overrightarrow {DN} \) (2)

Cộng vế với vế của (1) và (2) ta có:

\(2\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AD}  + \overrightarrow {DN}  - 2\overrightarrow {MA}  + \overrightarrow {BC}  - 2\overrightarrow {DN}  =  - \overrightarrow {MA}  - \overrightarrow {DN}  + \overrightarrow {BC}  + \overrightarrow {AD} \)

\( = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {CD}  + \overrightarrow {BC}  + \overrightarrow {AD}  = \frac{1}{3}\left( {\overrightarrow {AC}  + \overrightarrow {CB}  + \overrightarrow {CA}  + \overrightarrow {AD} } \right) + \overrightarrow {BC}  + \overrightarrow {AD}  = \frac{2}{3}\overrightarrow {BC}  + \frac{4}{3}\overrightarrow {AD} \)



Từ khóa phổ biến