Giải bài tập 2.35 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức

Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).


Đề bài

Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Sử dụng kiến thức về hai vectơ bằng nhau để chứng minh: Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) được gọi là bằng nhau, kí hiệu \(\overrightarrow a  = \overrightarrow b \) nếu chúng có cùng độ dài và cùng hướng.

Lời giải chi tiết

Gọi O là tâm hình chữ nhật ABCD. Khi đó, O là trung điểm của AC, BD.

Suy ra \(\overrightarrow {OC}  =  - \overrightarrow {OA} ,\overrightarrow {OD}  =  - \overrightarrow {OB} \)

Ta có: \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SO}  + \overrightarrow {OA}  + \overrightarrow {SO}  + \overrightarrow {OC}  = 2\overrightarrow {SO}  + \left( {\overrightarrow {OA}  - \overrightarrow {OA} } \right) = 2\overrightarrow {SO} \)

\(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SO}  + \overrightarrow {OB}  + \overrightarrow {SO}  + \overrightarrow {OD}  = 2\overrightarrow {SO}  + \left( {\overrightarrow {OB}  - \overrightarrow {OB} } \right) = 2\overrightarrow {SO} \)

Do đó, \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \)



Từ khóa phổ biến