Giải bài tập 1.30 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng (a; b). Phát biểu nào dưới đây là đúng? A. Nếu \(f'\left( x \right) \ge 0\) với mọi x thuộc (a; b) thì hàm số \(y = f\left( x \right)\) đồng biến trên (a; b). B. Nếu \(f'\left( x \right) > 0\) với mọi x thuộc (a; b) thì hàm số \(y = f\left( x \right)\) đồng biến trên (a; b). C. Hàm số \(y = f\left( x \right)\) đồng biến trên (a; b) khi và chỉ khi \(f'\left( x \right) \ge 0\) với mọi x thuộc (a; b). D. Hàm số \(y = f\left( x \right)


Đề bài

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng (a; b). Phát biểu nào dưới đây là đúng?
A. Nếu \(f'\left( x \right) \ge 0\) với mọi x thuộc (a; b) thì hàm số \(y = f\left( x \right)\) đồng biến trên (a; b).
B. Nếu \(f'\left( x \right) > 0\) với mọi x thuộc (a; b) thì hàm số \(y = f\left( x \right)\) đồng biến trên (a; b).
C. Hàm số \(y = f\left( x \right)\) đồng biến trên (a; b) khi và chỉ khi \(f'\left( x \right) \ge 0\) với mọi x thuộc (a; b).
D. Hàm số \(y = f\left( x \right)\) đồng biến trên (a; b) khi và chỉ khi \(f'\left( x \right) > 0\) với mọi x thuộc (a; b).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định lí về tính đồng biến của hàm số để tìm đáp án đúng: Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng (a; b). Nếu \(f'\left( x \right) > 0\) với mọi x thuộc (a; b) thì hàm số \(y = f\left( x \right)\) đồng biến trên (a; b).

Lời giải chi tiết

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng (a; b). Nếu \(f'\left( x \right) > 0\) với mọi x thuộc (a; b) thì hàm số \(y = f\left( x \right)\) đồng biến trên (a; b).

Chọn B



Từ khóa phổ biến