Giải bài 73 trang 107 SBT toán 10 - Cánh diều

Cho tam giác ABC. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\) (*)


Đề bài

Cho tam giác ABC. Chứng minh rằng \(\overrightarrow {AB} .\overrightarrow {AC}  = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\) (*)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất \({\left| {\overrightarrow a } \right|^2} = {\overrightarrow a ^2}\); các phép toán vectơ và các hằng đẳng thức để biến đổi vế phải của đẳng thức (*)

Lời giải chi tiết

Xét \(A{B^2} + A{C^2} - B{C^2} = \left( {{{\overrightarrow {AB} }^2} + {{\overrightarrow {AC} }^2} - {{\overrightarrow {BC} }^2}} \right) = \left[ {{{\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)}^2} - 2\overrightarrow {AB} .\overrightarrow {AC}  - {{\overrightarrow {BC} }^2}} \right]\)

\( = \left[ {\left( {\overrightarrow {AB}  + \overrightarrow {AC}  - \overrightarrow {BC} } \right)\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {BC} } \right) - 2\overrightarrow {AB} .\overrightarrow {AC} } \right]\) \( = \left[ {\left( {\overrightarrow {AB}  + \overrightarrow {CB}  - \overrightarrow {CA} } \right)\left( {\overrightarrow {AC}  + \overrightarrow {AC} } \right) - 2\overrightarrow {AB} .\overrightarrow {AC} } \right]\)

\( = \left( {2\overrightarrow {AB} .2\overrightarrow {AC}  - 2\overrightarrow {AB} .\overrightarrow {AC} } \right) = 2\overrightarrow {AB} .\overrightarrow {AC} \)

Vậy \(\overrightarrow {AB} .\overrightarrow {AC}  = \frac{1}{2}\left( {A{B^2} + A{C^2} - B{C^2}} \right)\) (ĐPCM)

 



Từ khóa phổ biến