Bài 3.59 trang 184 SBT giải tích 12
Giải bài 3.59 trang 184 sách bài tập giải tích 12. Thể tích khối tròn xoay tạo bởi phép quay quanh trục...
Đề bài
Thể tích khối tròn xoay tạo bởi phép quay quanh trục \(\displaystyle Ox\) của hình phẳng giới hạn bởi các đường \(\displaystyle y = {\sin ^{\frac{3}{2}}}x,y = 0,x = 0\) và \(\displaystyle x = \frac{\pi }{2}\) bằng
A. \(\displaystyle 1\) B. \(\displaystyle \frac{2}{7}\)
C. \(\displaystyle 2\pi \) D. \(\displaystyle \frac{2}{3}\pi \)
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính thể tích \(\displaystyle V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).
Lời giải chi tiết
Ta có: \(\displaystyle V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {{{\sin }^{\frac{3}{2}}}x} \right)}^2}dx} \) \(\displaystyle = \pi .\int\limits_0^{\frac{\pi }{2}} {{{\sin }^3}xdx} \) \(\displaystyle = \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)\sin xdx} \)
\(\displaystyle = - \pi .\int\limits_0^{\frac{\pi }{2}} {\left( {1 - {{\cos }^2}x} \right)d\left( {\cos x} \right)} \) \(\displaystyle = - \pi .\left. {\left( {\cos x - \frac{{{{\cos }^3}x}}{3}} \right)} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle = - \pi \left( { - 1 + \frac{1}{3}} \right) = \frac{{2\pi }}{3}\)
Chọn D.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 3.59 trang 184 SBT giải tích 12 timdapan.com"