Bài 3.51 trang 182 SBT giải tích 12

Giải bài 3.51 trang 182 sách bài tập giải tích 12. Tìm khẳng định sai trong các khẳng định sau:...


Đề bài

Tìm khẳng định sai trong các khẳng định sau:

A. \(\displaystyle  \int\limits_0^1 {\sin \left( {1 - x} \right)dx}  = \int\limits_0^1 {\sin xdx} \)

B. \(\displaystyle  \int\limits_0^\pi  {\sin \frac{x}{2}dx}  = 2\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \)

C. \(\displaystyle  \int\limits_0^1 {{{\left( {1 + x} \right)}^x}dx}  = 0\)

D. \(\displaystyle  \int\limits_{ - 1}^1 {{x^{2007}}\left( {1 + x} \right)dx}  = \frac{2}{{2009}}\)

Phương pháp giải - Xem chi tiết

Xét tính đúng sai của các đáp án và kết luận.

Lời giải chi tiết

Đáp án A: Đặt \(\displaystyle  t = 1 - x \Rightarrow dt =  - dx\)

\(\displaystyle   \Rightarrow \int\limits_0^1 {\sin \left( {1 - x} \right)dx}  = \int\limits_1^0 {\sin t\left( { - dt} \right)} \)  \(\displaystyle  \int\limits_0^1 {\sin \left( {1 - x} \right)dx} \) \(\displaystyle   = \int\limits_0^1 {\sin tdt}  = \int\limits_0^1 {\sin xdx} \) nên A đúng.

Đáp án B: Ta có: \(\displaystyle  \int\limits_0^\pi  {\sin \frac{x}{2}dx}  =  - \left. {2\cos \frac{x}{2}} \right|_0^\pi  = 2\).

\(\displaystyle  2\int\limits_0^{\frac{\pi }{2}} {\sin xdx}  =  - \left. {2\cos x} \right|_0^{\frac{\pi }{2}} = 2\) nên \(\displaystyle  \int\limits_0^\pi  {\sin \frac{x}{2}dx}  = 2\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \) hay B đúng.

Đáp án D: \(\displaystyle  \int\limits_{ - 1}^1 {{x^{2007}}\left( {1 + x} \right)dx} \) \(\displaystyle   = \int\limits_{ - 1}^1 {\left( {{x^{2007}} + {x^{2008}}} \right)dx} \) \(\displaystyle   = \left. {\left( {\frac{{{x^{2008}}}}{{2008}} + \frac{{{x^{2009}}}}{{2009}}} \right)} \right|_{ - 1}^1\) \(\displaystyle   = \frac{1}{{2008}} + \frac{1}{{2009}} - \frac{1}{{2008}} + \frac{1}{{2009}}\) \(\displaystyle   = \frac{2}{{2009}}\) hay D đúng.

Đáp án C: 

Sai vì \({\left( {1 + x} \right)^x} \ge 1,\forall x \in \left[ {0;1} \right]\) nên nhờ ý nghĩa hình học của tích phân ta có \(\int\limits_0^1 {{{\left( {1 + x} \right)}^x}dx}  > 0\)

Chọn C.



Từ khóa phổ biến