Bài 33 trang 10 SBT toán 9 tập 1
Giải bài 33 trang 10 sách bài tập toán 9. Tìm điều kiện của x để các biểu thức sau có nghĩa và biến đổi chúng về dạng tích...
Tìm điều kiện của \(x\) để các biểu thức sau có nghĩa và biến đổi chúng về dạng tích:
LG câu a
\(\sqrt {{x^2} - 4} + 2\sqrt {x - 2} \);
Phương pháp giải:
Áp dụng:
- Để \(\sqrt A \) có nghĩa thì \(A \ge 0\)
- Để \(\sqrt {A.B} \) có nghĩa ta xét các trường hợp:
Trường hợp 1:
\(\left\{ \begin{array}{l}
A \ge 0\\
B \ge 0
\end{array} \right.\)
Trường hợp 2:
\(\left\{ \begin{array}{l}
A \le 0\\
B \le 0
\end{array} \right.\)
Biến đổi về dạng tích:
Nếu \(A \ge 0,B \ge 0\) thì \(\sqrt {A.B} = \sqrt A .\sqrt B \)
Với \(A \ge 0,B \ge 0, C \ge 0 \)
Ta có :
\(\begin{array}{l}
\sqrt {A.B} + \sqrt {A.C} = \sqrt A .\sqrt B + \sqrt A .\sqrt C \\
= \sqrt A .(\sqrt B + \sqrt C )
\end{array}.\)
Lời giải chi tiết:
Ta có: \(\sqrt {{x^2} - 4} + 2\sqrt {x - 2} \) có nghĩa khi và chỉ khi:
\({x^2} - 4 \ge 0\) và \(x - 2 \ge 0\)
Ta có: \({x^2} - 4 \ge 0 \Leftrightarrow (x + 2)(x - 2) \ge 0\)
Trường hợp 1:
\(\left\{ \matrix{
x + 2 \ge 0 \hfill \cr
x - 2 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr
x \ge 2 \hfill \cr} \right. \Leftrightarrow x \ge 2(1)\)
Trường hợp 2:
\(\left\{ \matrix{
x + 2 \le 0 \hfill \cr
x - 2 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 2 \hfill \cr
x \le 2 \hfill \cr} \right. \Leftrightarrow x \le - 2(2)\)
Mà \(x - 2 \ge 0 \Leftrightarrow x \ge 2(3)\)
Vậy từ (1), (2), (3) thì \(x ≥ 2\) thì biểu thức có nghĩa.
Biến đổi về dạng tích:
\(\eqalign{
& \sqrt {{x^2} - 4} + 2\sqrt {x - 2} \cr
& = \sqrt {(x + 2)(x - 2)} + 2\sqrt {x - 2} \cr}\)
\(= \sqrt {x - 2} .\left( {\sqrt {x + 2} + 2} \right)\)
LG câu b
\(3\sqrt {x + 3} + \sqrt {{x^2} - 9} \).
Phương pháp giải:
Áp dụng:
- Để \(\sqrt A \) có nghĩa thì \(A \ge 0\)
- Để \(\sqrt {A.B} \) có nghĩa ta xét các trường hợp:
Trường hợp 1:
\(\left\{ \begin{array}{l}
A \ge 0\\
B \ge 0
\end{array} \right.\)
Trường hợp 2:
\(\left\{ \begin{array}{l}
A \le 0\\
B \le 0
\end{array} \right.\)
Biến đổi về dạng tích:
Nếu \(A \ge 0,B \ge 0\) thì \(\sqrt {A.B} = \sqrt A .\sqrt B \)
Với \(A \ge 0,B \ge 0, C \ge 0 \)
Ta có :
\(\begin{array}{l}
\sqrt {A.B} + \sqrt {A.C} = \sqrt A .\sqrt B + \sqrt A .\sqrt C \\
= \sqrt A .(\sqrt B + \sqrt C )
\end{array}.\)
Lời giải chi tiết:
Ta có: \(3\sqrt {x + 3} + \sqrt {{x^2} - 9} \) có nghĩa khi và chỉ khi:
\(x + 3 \ge 0\) và \({x^2} - 9 \ge 0\)
Ta có: \(x + 3 \ge 0 \Leftrightarrow x \ge -3\)
\({x^2} - 9 \ge 0 \Leftrightarrow (x + 3)(x - 3) \ge 0\)
Trường hợp 1:
\(\left\{ \matrix{
x + 3 \ge 0 \hfill \cr
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 3 \hfill \cr
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)
Trường hợp 2:
\(\left\{ \matrix{
x + 3 \le 0 \hfill \cr
x - 3 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 3 \hfill \cr
x \le 3 \hfill \cr} \right. \Leftrightarrow x \le - 3\)
Vậy với \(x ≥ 3\) thì biểu thức có nghĩa.
Biến đổi về dạng tích:
\(\eqalign{
& 3\sqrt {x + 3} + \sqrt {{x^2} - 9} \cr
& = 3\sqrt {x + 3} + \sqrt {(x + 3)(x - 3)} \cr} \)
\(= \sqrt {x + 3} \left( {3 + \sqrt {x - 3} } \right)\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 33 trang 10 SBT toán 9 tập 1 timdapan.com"