Giải bài 3 trang 92 SGK Toán 7 tập 2 - Cánh diều
Cho Hình 66 có
Đề bài
Cho Hình 66 có \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\). Chứng minh MN = QP, MP = QN.
Phương pháp giải - Xem chi tiết
Chứng minh hai tam giác MNQ bằng tam giác QPM.
Lời giải chi tiết
Ta có: tổng ba góc trong một tam giác bằng 180° và \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\)nên \(\widehat {PQM} = \widehat {NPQ}\).
Xét hai tam giác MNQ và QPM có:
\(\widehat {PMQ} = \widehat {NQM}\)
MQ chung
\(\widehat {PQM} = \widehat {NPQ}\)
Vậy \(\Delta MNQ = \Delta QPM\)(g.c.g). Do đó MN = QP, MP = QN ( 2 cạnh tương ứng)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 3 trang 92 SGK Toán 7 tập 2 - Cánh diều timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 3 trang 92 SGK Toán 7 tập 2 - Cánh diều timdapan.com"