Giải bài 3 trang 68 SGK Toán 7 tập 2 - Cánh diều

Viết đa thức trong mỗi trường hợp sau: a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6; b) Đa thức bậc hai có hệ số tự do bằng 4; c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0; d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0.


Đề bài

Viết đa thức trong mỗi trường hợp sau:

a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6;

b) Đa thức bậc hai có hệ số tự do bằng 4;

c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0;

d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0.

Phương pháp giải - Xem chi tiết

a) Đa thức bậc nhất có dạng \(ax + b\)với a ≠ 0.

b) Đa thức bậc hai có dạng  \(a{x^2} + bx + c\)với a ≠ 0.

c) Đa thức bậc bốn có dạng \(a{x^4} + b{x^3} + c{x^2} + d\) với a ≠ 0.

d) Đa thức bậc sáu có dạng \(a{x^6} + b{x^5} + c{x^4} + d{x^3} + e{x^2} + gx + h\) với a ≠ 0.

Lời giải chi tiết

a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6 tức \(a =  - 2;b = 6\)

\( - 2x + 6\).

b) Đa thức bậc hai có hệ số tự do bằng 4: \({x^2} + x + 4\).

c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0: \({x^4} + 0.{x^3} + {x^2} + 1 = {x^4} + {x^2} + 1\).

d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0: \({x^6} + 0.{x^5} + {x^4} + 0.{x^3} + {x^2} + 0.x = {x^6} + {x^4} + {x^2}\). 



Bài học liên quan

Từ khóa phổ biến