Giải bài 2.2 trang 25 SGK Toán 10 tập 1 – Kết nối tri thức

Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ:


Đề bài

Biểu diễn miền nghiệm của mỗi bất phương trình sau trên mặt phẳng tọa độ:

a) \(3x + 2y \ge 300\)

b) \(7x + 20y < 0\)

Phương pháp giải - Xem chi tiết

a) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn \(ax + by \ge c\) như sau:

Bước 1: Vẽ đường thẳng (nét liền).

Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c khác 0 thì ta lấy điểm để thay vào là gốc O(0;0).

Nếu O không thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d không chứa điểm đã lấy.

b) Ta biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn ax+b

Bước 1: Vẽ đường thẳng (nét đứt).

Bước 2: Lấy một điểm bất kì không thuộc d trên mặt phẳng rồi thay vào biểu thức ax+b. Xác định c có bằng 0 hay không, nếu c = 0 thì ta lấy điểm A(-1;-1) để thay vào.

Nếu A thỏa mãn bất phương trình thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng bờ d chứa điểm A đã lấy.

Lời giải chi tiết

a)

 

Bước 1: Vẽ đường thẳng \(3x + 2y = 300\)

Bước 2: Thay tọa độ điểm O(0;0) vào 3x+2y ta được 3.0+2.0<300

=> Điểm O không thuộc miền nghiệm.

=> Miền nghiệm của bất phương trình là nửa mặt phẳng có bờ 3x+2y=300 và không chứa điểm O.

b)

 

Bước 1: Vẽ đường thẳng 7x+20y=0 (nét đứt)

Bước 2: Vì c=0 nên ta thay tọa độ điểm A(-1;-1) vào biểu thức 7x+20y ta được:

7.(-1)+20.(-1)=-27<0

=> Điểm A thuộc miền nghiệm

=> Miền nghiệm là nửa mặt phẳng bờ là đường thẳng 7x+20y=0 và chứa điểm A(-1;-1) (không kể đường thẳng 7x+20y=0)



Bài học liên quan

Từ khóa phổ biến