Bài 1.74 trang 39 SBT giải tích 12

Giải bài 1.74 trang 39 sách bài tập giải tích 12. Giao điểm của đồ thị hàm số ...


Đề bài

Giao điểm của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{2x - 1}}\) với đường thẳng \(y = x + 2\) là:

A. \(\left( {1;3} \right)\) và \(\left( { - \dfrac{3}{2};\dfrac{1}{2}} \right)\)

B. \(\left( {1;3} \right)\) và \(\left( {0;2} \right)\)

C. \(\left( {0; - 1} \right)\) và \(\left( { - \dfrac{3}{2};\dfrac{1}{2}} \right)\)

D. \(\left( {0; - 1} \right)\) và \(\left( {0;2} \right)\)

Phương pháp giải - Xem chi tiết

- Xét phương trình hoành độ giao điểm.

- Giải phương trình và kết luận.

Lời giải chi tiết

Hoành độ giao điểm của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{2x - 1}}\) và \(y = x + 2\) là nghiệm của phương trình:

\(\dfrac{{2x + 1}}{{2x - 1}} = x + 2\)\( \Leftrightarrow 2x + 1 = \left( {x + 2} \right)\left( {2x - 1} \right)\) \( \Leftrightarrow 2x + 1 = 2{x^2} + 3x - 2\) \( \Leftrightarrow 2{x^2} + x - 3 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = 3\\x =  - \dfrac{3}{2} \Rightarrow y = \dfrac{1}{2}\end{array} \right.\)

Vậy giao điểm của đồ thị hàm số và đường thẳng là \(A\left( {1;3} \right)\) và \(B\left( { - \dfrac{3}{2};\dfrac{1}{2}} \right)\).

Chọn A.

Bài giải tiếp theo



Từ khóa phổ biến