Bài 1.21 trang 16 SBT giải tích 12
Giải bài 1.21 trang 16 sách bài tập giải tích 12. Xác định giá trị của m để hàm số sau có cực trị:...
Đề bài
Xác định giá trị của m để hàm số sau có cực trị: \(y = {x^3} + 2m{x^2} + mx - 1\)
Phương pháp giải - Xem chi tiết
- Tính \(y'\).
- Hàm số có cực trị khi và chỉ khi \(y’\) đổi dấu trên \(R\).
Lời giải chi tiết
TXĐ: \(D = \mathbb{R}\)
Ta có: \(y' = 3{x^2} + 4mx + m\)
Hàm số có cực trị khi và chỉ khi \(y’\) đổi dấu trên \(R\).
\(3{x^2} + 4mx + m = 0\) có hai nghiệm phân biệt.
\( \Leftrightarrow \;\Delta ' = 4{m^2} - 3m > 0\) có \(m\left( {4m-3} \right) > 0\)
\( \Leftrightarrow \left[ \matrix{
m < 0 \hfill \cr
m > {3 \over 4} \hfill \cr} \right.\)
Vậy hàm số đã cho có cực đại, cực tiểu khi \(m < 0\) hoặc \(m > {3 \over 4}\).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.21 trang 16 SBT giải tích 12 timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.21 trang 16 SBT giải tích 12 timdapan.com"