Bài 1.20 trang 16 SBT giải tích 12

Giải bài 1.20 trang 16 sách bài tập giải tích 12. Tìm cực trị của các hàm số sau:...


Tìm cực trị của các hàm số sau:

LG a

\(y = \sin 2x\)

Phương pháp giải:

Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \(\left[ {0;\pi } \right]\)

- Tính \(y'\), tìm nghiệm trong đoạn \(\left[ {0;\pi } \right]\).

- Tính \(y''\) và xét dấu của \(y''\) tại các điểm tìm được ở trên.

- Kết luận:

+ Tại điểm mà \(y''\) mang dấu âm thì là điểm cực đại.

+ Tại điểm mà \(y''\) mang dấu dương thì là điểm cực tiểu.

Giải chi tiết:

\(y = \sin 2x\)               

Hàm số có chu kỳ \(T = \pi \)

Xét hàm số \(y = \sin 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , ta có:

\(y' = 2\cos 2x\)

\(y = 0 \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} \hfill \cr 
x = {{3\pi } \over 4} \hfill \cr} \right.\)

Lại có: \(y'' =  - 4\sin 2x\);

\(y''\left( {\dfrac{\pi }{4}} \right) =  - 4\sin \left( {2.\dfrac{\pi }{4}} \right) =  - 4 < 0\) nên hàm số đạt cực đại tại \(x = \dfrac{\pi }{4}\) và \({y_{CD}} = y({\pi  \over 4}) = 1\)

\(y''\left( {\dfrac{3\pi }{4}} \right) =  - 4\sin \left( {2.\dfrac{3\pi }{4}} \right) =  4 > 0\) nên hàm số đạt cực tiểu tại \(x = \dfrac{3\pi }{4}\) và \({y_{CT}} = y({{3\pi } \over 4}) =  - 1\)

Vậy trên R ta có:

\({y_{CĐ}} = y({\pi  \over 4} + k\pi ) = 1;\)

\({y_{CT}} = y({{3\pi } \over 4} + k\pi ) =  - 1,k \in Z\)


LG b

\(y = \cos x - \sin x\)

Phương pháp giải:

Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\)

- Tính \(y'\), tìm nghiệm trong đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).

- Tính \(y''\) và xét dấu của \(y''\) tại các điểm tìm được ở trên.

- Kết luận:

+ Tại điểm mà \(y''\) mang dấu âm thì là điểm cực đại.

+ Tại điểm mà \(y''\) mang dấu dương thì là điểm cực tiểu.

Giải chi tiết:

Hàm số tuần hoàn chu kỳ \(\pi\) nên ta xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).

Ta có: \(y' =  - \sin x - \cos x = 0\) \( \Leftrightarrow \sin x =  - \cos x\) \( \Leftrightarrow \tan x =  - 1 \Leftrightarrow x =  - \dfrac{\pi }{4} + k\pi \).

Do \(x \in \left[ { - \pi ;\pi } \right]\) nên \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{4}\\x = \dfrac{{3\pi }}{4}\end{array} \right.\).

Lại có \(y'' =  - \cos x + \sin x\);

+) \(y''\left( { - \dfrac{\pi }{4}} \right) =  - \cos \left( { - \dfrac{\pi }{4}} \right) + \sin \left( { - \dfrac{\pi }{4}} \right) =  - \sqrt 2  < 0\) nên \(x =  - \dfrac{\pi }{4}\) là điểm cực đại của hàm số và \({y_{CD}} = y\left( { - \dfrac{\pi }{4}} \right) = \sqrt 2 \).

+) \(y''\left( {\dfrac{{3\pi }}{4}} \right) =  - \cos \left( {\dfrac{{3\pi }}{4}} \right) + \sin \left( {\dfrac{{3\pi }}{4}} \right) = \sqrt 2  > 0\) nên \(x = \dfrac{{3\pi }}{4}\) là điểm cực tiểu của hàm số và \({y_{CT}} = y\left( {\dfrac{{3\pi }}{4}} \right) =  - \sqrt 2 \).

Vậy trên \(\mathbb{R}\) thì \({x_{CD}} =  - \dfrac{\pi }{4} + k\pi \) là điểm cực đại của hàm số và \({y_{CD}} = y\left( { - \dfrac{\pi }{4} + k\pi } \right) = \sqrt 2 \); \({x_{CT}} = \dfrac{{3\pi }}{4} + k\pi \) là điểm cực tiểu của hàm số và \({y_{CT}} = y\left( {\dfrac{{3\pi }}{4} + k\pi } \right) =  - \sqrt 2 \)


LG c

\(y = {\sin ^2}x\)

Phương pháp giải:

Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \(\left[ {0;\pi } \right]\)

- Tính \(y'\), tìm nghiệm trong đoạn \(\left[ {0;\pi } \right]\).

- Lập bảng biến thiên và kết luận.

Giải chi tiết:

Ta có: \(y = {\sin ^2}x = {{1 - \cos 2x} \over 2}\)

Do đó, hàm số đã cho tuần hoàn với chu kỳ \(\pi \).

Ta xét hàm số \(y = {1 \over 2} - {1 \over 2}\cos 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\).

\(y' = 0 \Leftrightarrow \sin 2x = 0 \Leftrightarrow x = \dfrac{{k\pi }}{2}\)

Vì \(x \in \left[ {0;\pi } \right]\) nên \(\left[ \begin{array}{l}x = 0\\x = \dfrac{\pi }{2}\\x = \pi \end{array} \right.\).

Lập bảng biến thiên trên đoạn \(\left[ {0,\pi } \right]\)

Từ đó, ta thấy hàm số đạt cực tiểu tại \(x = k.{\pi  \over 2}\) với \(k\) chẵn, đạt cực đại tại \(x = k.{\pi  \over 2}\) với \(k \) lẻ, và \({y_{CT}} = y(2m\pi ) = 0\); \({y_{CĐ}} = y((2m + 1){\pi  \over 2}) = 1(m \in Z)\).

Bài giải tiếp theo
Bài 1.21 trang 16 SBT giải tích 12
Bài 1.22 trang 16 SBT giải tích 12
Bài 1.23 trang 16 SBT giải tích 12
Bài 1.24 trang 16 SBT giải tích 12
Bài 1.25 trang 16 SBT giải tích 12
Bài 1.26 trang 16 SBT giải tích 12
Bài 1.27 trang 17 SBT giải tích 12
Bài 1.28 trang 17 SBT giải tích 12
Bài 1.29 trang 17 SBT giải tích 12
Bài 1.30 trang 17 SBT giải tích 12

Video liên quan



Từ khóa