Bài 1.20 trang 16 SBT giải tích 12
Giải bài 1.20 trang 16 sách bài tập giải tích 12. Tìm cực trị của các hàm số sau:...
Tìm cực trị của các hàm số sau:
LG a
\(y = \sin 2x\)
Phương pháp giải:
Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \(\left[ {0;\pi } \right]\)
- Tính \(y'\), tìm nghiệm trong đoạn \(\left[ {0;\pi } \right]\).
- Tính \(y''\) và xét dấu của \(y''\) tại các điểm tìm được ở trên.
- Kết luận:
+ Tại điểm mà \(y''\) mang dấu âm thì là điểm cực đại.
+ Tại điểm mà \(y''\) mang dấu dương thì là điểm cực tiểu.
Giải chi tiết:
\(y = \sin 2x\)
Hàm số có chu kỳ \(T = \pi \)
Xét hàm số \(y = \sin 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , ta có:
\(y' = 2\cos 2x\)
\(y = 0 \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} \hfill \cr
x = {{3\pi } \over 4} \hfill \cr} \right.\)
Lại có: \(y'' = - 4\sin 2x\);
\(y''\left( {\dfrac{\pi }{4}} \right) = - 4\sin \left( {2.\dfrac{\pi }{4}} \right) = - 4 < 0\) nên hàm số đạt cực đại tại \(x = \dfrac{\pi }{4}\) và \({y_{CD}} = y({\pi \over 4}) = 1\)
\(y''\left( {\dfrac{3\pi }{4}} \right) = - 4\sin \left( {2.\dfrac{3\pi }{4}} \right) = 4 > 0\) nên hàm số đạt cực tiểu tại \(x = \dfrac{3\pi }{4}\) và \({y_{CT}} = y({{3\pi } \over 4}) = - 1\)
Vậy trên R ta có:
\({y_{CĐ}} = y({\pi \over 4} + k\pi ) = 1;\)
\({y_{CT}} = y({{3\pi } \over 4} + k\pi ) = - 1,k \in Z\)
LG b
\(y = \cos x - \sin x\)
Phương pháp giải:
Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\)
- Tính \(y'\), tìm nghiệm trong đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).
- Tính \(y''\) và xét dấu của \(y''\) tại các điểm tìm được ở trên.
- Kết luận:
+ Tại điểm mà \(y''\) mang dấu âm thì là điểm cực đại.
+ Tại điểm mà \(y''\) mang dấu dương thì là điểm cực tiểu.
Giải chi tiết:
Hàm số tuần hoàn chu kỳ \(\pi\) nên ta xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).
Ta có: \(y' = - \sin x - \cos x = 0\) \( \Leftrightarrow \sin x = - \cos x\) \( \Leftrightarrow \tan x = - 1 \Leftrightarrow x = - \dfrac{\pi }{4} + k\pi \).
Do \(x \in \left[ { - \pi ;\pi } \right]\) nên \(\left[ \begin{array}{l}x = - \dfrac{\pi }{4}\\x = \dfrac{{3\pi }}{4}\end{array} \right.\).
Lại có \(y'' = - \cos x + \sin x\);
+) \(y''\left( { - \dfrac{\pi }{4}} \right) = - \cos \left( { - \dfrac{\pi }{4}} \right) + \sin \left( { - \dfrac{\pi }{4}} \right) = - \sqrt 2 < 0\) nên \(x = - \dfrac{\pi }{4}\) là điểm cực đại của hàm số và \({y_{CD}} = y\left( { - \dfrac{\pi }{4}} \right) = \sqrt 2 \).
+) \(y''\left( {\dfrac{{3\pi }}{4}} \right) = - \cos \left( {\dfrac{{3\pi }}{4}} \right) + \sin \left( {\dfrac{{3\pi }}{4}} \right) = \sqrt 2 > 0\) nên \(x = \dfrac{{3\pi }}{4}\) là điểm cực tiểu của hàm số và \({y_{CT}} = y\left( {\dfrac{{3\pi }}{4}} \right) = - \sqrt 2 \).
Vậy trên \(\mathbb{R}\) thì \({x_{CD}} = - \dfrac{\pi }{4} + k\pi \) là điểm cực đại của hàm số và \({y_{CD}} = y\left( { - \dfrac{\pi }{4} + k\pi } \right) = \sqrt 2 \); \({x_{CT}} = \dfrac{{3\pi }}{4} + k\pi \) là điểm cực tiểu của hàm số và \({y_{CT}} = y\left( {\dfrac{{3\pi }}{4} + k\pi } \right) = - \sqrt 2 \)
LG c
\(y = {\sin ^2}x\)
Phương pháp giải:
Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \(\left[ {0;\pi } \right]\)
- Tính \(y'\), tìm nghiệm trong đoạn \(\left[ {0;\pi } \right]\).
- Lập bảng biến thiên và kết luận.
Giải chi tiết:
Ta có: \(y = {\sin ^2}x = {{1 - \cos 2x} \over 2}\)
Do đó, hàm số đã cho tuần hoàn với chu kỳ \(\pi \).
Ta xét hàm số \(y = {1 \over 2} - {1 \over 2}\cos 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\).
\(y' = 0 \Leftrightarrow \sin 2x = 0 \Leftrightarrow x = \dfrac{{k\pi }}{2}\)
Vì \(x \in \left[ {0;\pi } \right]\) nên \(\left[ \begin{array}{l}x = 0\\x = \dfrac{\pi }{2}\\x = \pi \end{array} \right.\).
Lập bảng biến thiên trên đoạn \(\left[ {0,\pi } \right]\)
Từ đó, ta thấy hàm số đạt cực tiểu tại \(x = k.{\pi \over 2}\) với \(k\) chẵn, đạt cực đại tại \(x = k.{\pi \over 2}\) với \(k \) lẻ, và \({y_{CT}} = y(2m\pi ) = 0\); \({y_{CĐ}} = y((2m + 1){\pi \over 2}) = 1(m \in Z)\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.20 trang 16 SBT giải tích 12 timdapan.com"