Bài 10 trang 62 SBT toán 9 tập 1

Giải bài 10 trang 62 sách bài tập toán 9. Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0.


Đề bài

Chứng minh rằng hàm số bậc nhất \(y = ax + b\) đồng biến khi \(a > 0\) và nghịch biến khi \(a < 0.\) 

Phương pháp giải - Xem chi tiết

Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).

Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của \(x\) thuộc R và có tính chất sau:

a) Đồng biến trên \(R\), khi \(a > 0\).

b) Nghịch biến trên \(R\), khi \(a < 0\).

Lời giải chi tiết

Xét hàm số bậc nhất \(y = ax +b\) ( \(a \ne 0\) ) trên tập số thực \(R.\) 

Với hai số \(x_1\) và \(x_2\) thuộc \(R\) và \({x_1} < {x_2}\) , ta có :

\({y_1} = a{x_1} + b\)

\({y_2} = a{x_2} + b\)

\({y_2} - {y_1} = \left( {a{x_2} + b} \right) - \left( {a{x_1} + b} \right)\)\( = a\left( {{x_2} - {x_1}} \right)\)    (1)

Trường hợp \(a > 0:\)

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\) (2)

Từ (1) và (2) suy ra: \({y_2} - {y_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) > 0 \Rightarrow {y_2} >{y_1}\)

Vậy hàm số đồng biến khi \(a > 0.\)

Trường hợp \(a < 0\):

Ta có: \({x_1} < {x_2}\) suy ra : \({x_2} - {x_1} > 0\) (3)

Từ (1) và (3) suy ra:

\({y_2} - {{\rm{y}}_1} = {\rm{a}}\left( {{x_2} - {x_1}} \right) < 0 \Rightarrow {y_2} < {y_1}\)

Vậy hàm số nghịch biến khi \(a < 0.\) 



Từ khóa phổ biến