Câu 68 trang 95 SGK Đại số và Giải tích 11 Nâng cao
Một nhóm có 7 người trong đó gồm 4 nam và 3 nữ. Chọn ngẫu nhiên 3 người. Gọi X là số nữ trong 3 người được chọn.
Một nhóm có 7 người trong đó gồm 4 nam và 3 nữ. Chọn ngẫu nhiên 3 người. Gọi X là số nữ trong 3 người được chọn.
LG a
Lập bảng phân bố xác suất của X.
Lời giải chi tiết:
Số trường hợp có thể là \(C_7^3 = 35\)
Xác suất để không có người nữ nào được chọn là : \(P\left( {X = 0} \right) = {{C_4^3} \over {C_7^3}} = {4 \over {35}}\)
Xác suất để có 1 nữ được chọn là \(P\left( {X = 1} \right) = {{C_3^1C_4^2} \over {C_7^3}} = {{18} \over {35}}\)
Xác suất để có 2 nữ được chọn là \(P\left( {X = 2} \right) = {{C_3^2C_4^1} \over {C_7^3}} = {{12} \over {35}}\)
Xác suất để có 3 nữ được chọn là \(P\left( {X = 3} \right) = {{C_3^3} \over {C_7^3}} = {1 \over {35}}\)
Bảng phân bố xác suất của X như sau :
X |
0 |
1 |
2 |
3 |
P |
\({4 \over {35}}\) |
\({18 \over {35}}\) |
\({12 \over {35}}\) |
\({1 \over {35}}\) |
LG b
Tính \(E(X)\) và \(V(X)\) (tính chính xác đến hàng phần trăm).
Lời giải chi tiết:
Ta có:
\(\eqalign{
& E\left( X \right) = 0.{4 \over {35}} + 1.{{18} \over {35}} + 2.{{12} \over {35}} + 3.{1 \over {35}} = {9 \over 7} \approx 1,29 \cr
& V\left( X \right) = {\left( {0 - {9 \over 7}} \right)^2}.{4 \over {35}} + {\left( {1 - {9 \over 7}} \right)^2}.{{18} \over {35}} + {\left( {2 - {9 \over 7}} \right)^2}.{{12} \over {35}} + {\left( {3 - {9 \over 7}} \right)^2}.{1 \over {35}} \cr
& \;\;\;\;\;\;\;\;\; \approx 0,49 \cr} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 68 trang 95 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"