Câu 6 trang 15 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số y = f(x) = 2sin2x


Cho hàm số \(y = f(x) = 2\sin 2x\)

a. Chứng minh rằng với số nguyên \(k\) tùy ý, luôn có \(f(x + kπ) = f(x)\) với mọi \(x\).

b. Lập bảng biến thiên của hàm số \(y = 2\sin 2x\) trên đoạn  \(\left[ { - {\pi \over 2};{\pi \over 2}} \right].\)

c. Vẽ đồ thị của hàm số \(y = 2\sin 2x\).

LG a

Chứng minh rằng với số nguyên \(k\) tùy ý, luôn có \(f(x + kπ) = f(x)\) với mọi \(x\).

Lời giải chi tiết:

Ta có \(f(x + kπ) = 2\sin 2(x + kπ) \)

\(= 2\sin (2x + k2π) = 2\sin 2x = f(x),\) \( ∀ x \in\mathbb R\)


LG b

Lập bảng biến thiên của hàm số \(y = 2\sin 2x\) trên đoạn  \(\left[ { - {\pi \over 2};{\pi \over 2}} \right].\)

Lời giải chi tiết:

Bảng biến thiên :


LG c

Vẽ đồ thị của hàm số \(y = 2\sin 2x\).

Lời giải chi tiết:

Đồ thị :

 

Bài giải tiếp theo
Câu 7 trang 16 SGK Đại số và Giải tích 11 Nâng cao
Câu 8 trang 16 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 10 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 11 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 17 SGK Đại số và Giải tích 11 Nâng cao

Video liên quan



Từ khóa