Câu 6 trang 15 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số y = f(x) = 2sin2x


Cho hàm số \(y = f(x) = 2\sin 2x\)

a. Chứng minh rằng với số nguyên \(k\) tùy ý, luôn có \(f(x + kπ) = f(x)\) với mọi \(x\).

b. Lập bảng biến thiên của hàm số \(y = 2\sin 2x\) trên đoạn  \(\left[ { - {\pi \over 2};{\pi \over 2}} \right].\)

c. Vẽ đồ thị của hàm số \(y = 2\sin 2x\).

LG a

Chứng minh rằng với số nguyên \(k\) tùy ý, luôn có \(f(x + kπ) = f(x)\) với mọi \(x\).

Lời giải chi tiết:

Ta có \(f(x + kπ) = 2\sin 2(x + kπ) \)

\(= 2\sin (2x + k2π) = 2\sin 2x = f(x),\) \( ∀ x \in\mathbb R\)


LG b

Lập bảng biến thiên của hàm số \(y = 2\sin 2x\) trên đoạn  \(\left[ { - {\pi \over 2};{\pi \over 2}} \right].\)

Lời giải chi tiết:

Bảng biến thiên :


LG c

Vẽ đồ thị của hàm số \(y = 2\sin 2x\).

Lời giải chi tiết:

Đồ thị :

 



Từ khóa phổ biến