Câu 4 trang 109 SGK Đại số 10 nâng cao

Hãy so sánh các kết quả sau đây:


Hãy so sánh các kết quả sau đây:

LG a

\(\sqrt {2000}  + \sqrt {2005} \) và \(\sqrt {2002}  + \sqrt {2003} \) (không dùng bảng số hoặc máy tính)

Giải chi tiết:

Giả sử: \(\sqrt {2000}  + \sqrt {2005} \, < \sqrt {2002}  + \sqrt {2003} \,\,\,\,\,(1)\) 

Ta có:

\(\eqalign{
& (1) \Leftrightarrow \,{(\sqrt {2000} + \sqrt {2005} )^2}\, < {(\sqrt {2002} + \sqrt {2003} \,)^2} \cr 
& \Leftrightarrow 4005 + 2\sqrt {2000.2005} < 4005 + 2\sqrt {2002.2003} \cr 
& \Leftrightarrow 2000.2005 < 2002.2003 \cr 
& \Leftrightarrow 2000.2005 < (2000 + 2)(2005 - 2) \cr 
& \Leftrightarrow 2000.2005 < 2000.2005 + 6 \cr} \) 

Ta thấy kết quả suy ra luôn đúng.

 Do đó: \(\sqrt {2000}  + \sqrt {2005}  < \sqrt {2002}  + \sqrt {2003} \)


LG b

\(\sqrt {a + 2}  + \sqrt {a + 4} \) và \(\sqrt a  + \sqrt {a + 6} \,\,(a \ge 0)\)

Giải chi tiết:

Giả sử:  

\(\sqrt {a + 2}  + \sqrt {a + 4} ≤  \sqrt a  + \sqrt {a + 6} \,\,(a \ge 0)\) (2)

Ta có:

\(\eqalign{
& (2) \Leftrightarrow {(\sqrt {a + 2} + \sqrt {a + 4} )^2} \le {(\sqrt a + \sqrt {a + 6} )^2} \cr 
& \Leftrightarrow 2a + 6 + 2\sqrt {(a + 2)(a + 4)} \le 2a \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+ 6 + 2\sqrt {a(a + 6)} \cr 
& \Leftrightarrow (a + 2)(a + 4) \le a(a + 6) \cr 
& \Leftrightarrow {a^2} + 6a + 8 \le {a^2} + 6a \cr 
& \Leftrightarrow 8 \le 0 \cr} \)

Ta thấy : \(8 ≤ 0\) là vô lý

Vậy  \(\sqrt {a + 2}  + \sqrt {a + 4}  > \sqrt a  + \sqrt {a + 6} \,\,(a \ge 0)\)



Từ khóa phổ biến