Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Tìm giới hạn của các dãy số (un) với
Tìm giới hạn của các dãy số (un) với
LG a
\({u_n} = {{{3^n} + 1} \over {{2^n} - 1}}\)
Phương pháp giải:
Chia cả tử và mẫu cho 3n
Lời giải chi tiết:
\({u_n} = \frac{{{3^n}\left( {1 + \frac{1}{{{3^n}}}} \right)}}{{{3^n}\left( {\frac{{{2^n}}}{{{3^n}}} - \frac{1}{{{3^n}}}} \right)}} = {{1 + {{\left( {{1 \over 3}} \right)}^n}} \over {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}}}\)
\(\eqalign{
& \lim \left[ {1 + {{\left( {{1 \over 3}} \right)}^n}} \right] = 1 > 0\cr &\text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}} \right] = 0;\cr &{{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}}\right)}^n}} >0 \cr
& \text{ nên }\,\lim {u_n} = + \infty \cr} \)
LG b
\({u_n} = {2^n} - {3^n}\)
Phương pháp giải:
Đặt 3n ra làm nhân tử chung và tính giới hạn.
Lời giải chi tiết:
\(\eqalign{
& {u_n} = {3^n}\left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] \cr
& \lim {3^n} = + \infty\cr &\text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] = - 1 < 0 \cr
&\text{ nên }{{\mathop{\rm lim}\nolimits}\,u _n} = - \infty \cr} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"