Bài tập 3 trang 83 Tài liệu dạy – học Toán 8 tập 1

Giải bài tập Thực hiện phép tính và rút gọn:


Đề bài

Thực hiện phép tính và rút gọn:

a) \({5 \over {{x^2} - 3x - 28}} + {7 \over {2x - 14}}\) ;

b) \({{d - 4} \over {{d^2} + 2d - 8}} - {{d + 2} \over {{d^2} - 16}}\) ;

c) \({{{m^2} + n} \over {{m^2} - {n^2}}} + {m \over {n - m}} + {n \over {m + n}}\) ;

d) \({{y + 1} \over {y - 1}} + {{y + 2} \over {y - 2}} + {y \over {{y^2} - 3y + 2}}\) ;

e) \({{{1 \over {b + 2}} + {1 \over {b - 5}}} \over {{{2{b^2} - b - 3} \over {{b^2} - 3b - 10}}}}\)

f) \(\left( {{{2s} \over {2s + 1}} - 1} \right):\left( {1 + {{2s} \over {1 - 2s}}} \right)\) .

Lời giải chi tiết

\(\eqalign{  & a)\,\,{5 \over {{x^2} - 3x - 28}} + {7 \over {2x - 14}}  \cr  & \,\,\,\,\, = {5 \over {\left( {x - 7} \right)\left( {x + 4} \right)}} + {7 \over {2\left( {x - 7} \right)}}  \cr  & \,\,\,\,\, = {{5.2} \over {2\left( {x - 7} \right)\left( {x + 4} \right)}} + {{7\left( {x + 4} \right)} \over {2.\left( {x - 7} \right)\left( {x + 4} \right)}}  \cr  & \,\,\,\,\, = {{10 + 7x + 28} \over {2\left( {x - 7} \right)\left( {x + 4} \right)}} = {{7x + 38} \over {2\left( {x - 7} \right)\left( {x + 4} \right)}}  \cr  & b)\,\,{{d - 4} \over {{d^2} + 2d - 8}} - {{d + 2} \over {{d^2} - 16}} = {{d - 4} \over {\left( {d + 4} \right)\left( {d - 2} \right)}} + {{ - \left( {d + 2} \right)} \over {\left( {d - 4} \right)\left( {d + 4} \right)}}  \cr  & \,\,\,\,\, = {{{{\left( {d - 4} \right)}^2} - \left( {d + 2} \right)\left( {d - 2} \right)} \over {\left( {d + 4} \right)\left( {d - 2} \right)\left( {d - 4} \right)}} = {{{d^2} - 8d + 16 - {d^2} + 4} \over {\left( {d + 4} \right)\left( {d - 2} \right)\left( {d - 4} \right)}}  \cr  & \,\,\,\,\, = {{ - 8d + 20} \over {\left( {d + 4} \right)\left( {d - 2} \right)\left( {d - 4} \right)}}  \cr  & c)\,\,{{{m^2} + {n^2}} \over {{m^2} - {n^2}}} + {m \over {n - m}} + {n \over {m + n}} = {{{m^2} + {n^2}} \over {\left( {m - n} \right)\left( {m + n} \right)}} + {{ - m} \over {m - n}} + {n \over {m + n}}  \cr  & \,\,\,\,\, = {{{m^2} + {n^2}} \over {\left( {m - n} \right)\left( {m + n} \right)}} + {{ - m\left( {m + n} \right)} \over {\left( {m - n} \right)\left( {m + n} \right)}} + {{n\left( {m - n} \right)} \over {\left( {m - n} \right)\left( {m + n} \right)}}  \cr  & \,\,\,\,\, = {{{m^2} + {n^2} - {m^2} - mn + mn - {n^2}} \over {\left( {m - n} \right)\left( {m + n} \right)}} = {0 \over {\left( {m - n} \right)\left( {m + n} \right)}} = 0  \cr  & d)\,\,{{y + 1} \over {y - 1}} + {{y + 2} \over {y - 2}} + {y \over {{y^2} - 3y + 2}} = {{y + 1} \over {y - 1}} + {{y + 2} \over {y - 2}} + {y \over {\left( {y - 2} \right)\left( {y - 1} \right)}}  \cr  & \,\,\,\,\, = {{\left( {y + 1} \right)\left( {y - 2} \right)} \over {\left( {y - 2} \right)\left( {y - 1} \right)}} + {{\left( {y + 2} \right)\left( {y - 1} \right)} \over {\left( {y - 2} \right)\left( {y - 1} \right)}} + {y \over {\left( {y - 2} \right)\left( {y - 1} \right)}}  \cr  & \,\,\,\,\, = {{{y^2} - 2y + y - 2 + {y^2} - y + 2y - 2 + y} \over {\left( {y - 2} \right)\left( {y - 1} \right)}}  \cr  & \,\,\,\,\, = {{2{y^2} + y - 4} \over {\left( {y - 2} \right)\left( {y - 1} \right)}} \cr} \)

\(\eqalign{  & e)\,\,{{{1 \over {b + 2}} + {1 \over {b - 5}}} \over {{{2{b^2} - b - 3} \over {{b^2} - 3b - 10}}}} = \left( {{1 \over {b + 2}} + {1 \over {b - 5}}} \right):{{2{b^2} - b - 3} \over {{b^2} - 3b - 10}}  \cr  & \,\,\,\,\, = {{b - 5 + b + 2} \over {\left( {b + 2} \right)\left( {b - 5} \right)}}.{{{b^2} - 3b - 10} \over {2{b^2} - b - 3}} = {{2b - 3} \over {\left( {b + 2} \right)\left( {b - 5} \right)}}.{{{b^2} - 5b + 2b - 10} \over {2{b^2} + 2b - 3b - 3}}  \cr  & \,\,\,\,\, = {{2b - 3} \over {\left( {b + 2} \right)\left( {b - 5} \right)}}.{{\left( {b - 5} \right)\left( {b + 2} \right)} \over {\left( {b + 1} \right)\left( {2b - 3} \right)}} = {{\left( {2b - 3} \right)\left( {b - 5} \right)\left( {b + 2} \right)} \over {\left( {b + 2} \right)\left( {b - 5} \right)\left( {b + 1} \right)\left( {2b - 3} \right)}}  \cr  & \,\,\,\,\, = {1 \over {b + 1}}  \cr  & f)\,\,\left( {{{2s} \over {2s + 1}} - 1} \right):\left( {1 + {{2s} \over {1 - 2s}}} \right) = {{2s - \left( {2s + 1} \right)} \over {2s + 1}}:{{1 - 2s + 2s} \over {1 - 2s}}  \cr  & \,\,\,\,\,\, = {{ - 1} \over {2s + 1}}.{{1 - 2s} \over 1} = {{2s - 1} \over {2s + 1}} \cr} \)