Bài 7.4 trang 37 SGK Toán 11 tập 2 - Cùng khám phá
Một bình nuôi cấy vi sinh vật được truyền nhiệt đến một nhiệt độ thích hợp. Biết rằng nhiệt độ của bình tại thời điểm t phút được tính bằng hàm số \(f(t) = {t^3}\).
Đề bài
Một bình nuôi cấy vi sinh vật được truyền nhiệt đến một nhiệt độ thích hợp. Biết rằng nhiệt độ của bình tại thời điểm t phút được tính bằng hàm số \(f(t) = {t^3}\).
a, Tìm tốc độ thay đổi nhiệt độ của bình tại thời điểm t= 2 phút
b, Sau bao lâu thì nhiệt độ của bình đạt \({27^0}C\)? Tìm tốc độ thay đổi nhiệt độ của bình tại thời điểm đó.
Phương pháp giải - Xem chi tiết
Tốc độ thay đổi nhiệt độ của bình là đạo hàm của hàm số tại thời điểm t = 2 phút
Lời giải chi tiết
a, Ta có: \(f'(2) = \mathop {\lim }\limits_{t \to 2} \frac{{f(t) - f(2)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{{t^3} - 8}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{(t - 2).({t^2} + 2t + 4)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} ({t^2} + 2t + 4) = 12\)
b, Để nhiệt độ của bình đạt \({27^0}C\) thì: \({t^3} = 27 = {3^3} \Rightarrow t = 3\)
Sau 3 phút thì nhiệt độ bình là \({27^0}C\)
Ta có: \(f'(3) = \mathop {\lim }\limits_{t \to 3} \frac{{f(t) - f(3)}}{{t - 3}} = \mathop {\lim }\limits_{t \to 3} \frac{{{t^3} - 27}}{{t - 3}} = \mathop {\lim }\limits_{t \to 3} \frac{{(t - 3).({t^2} + 2t + 4)}}{{t - 3}} = \mathop {\lim }\limits_{t \to 3} ({t^2} + 3t + 9) = 27\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 7.4 trang 37 SGK Toán 11 tập 2 - Cùng khám phá timdapan.com"