Bài 48 trang 82 Vở bài tập toán 9 tập 2
Giải Bài 48 trang 82 VBT toán 9 tập 2. Tìm hai số u và v trong mỗi trường hợp sau: a) Biết u + v = 12, uv = 28 và u > v...
Tìm hai số u và v trong mỗi trường hợp sau:
LG a
Biết u + v = 12, uv = 28 và u > v
Phương pháp giải:
Ta sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\))
Giải chi tiết:
Hai số phải tìm là hai nghiệm của phương trình \({x^2} - 12x + 28 = 0\)
Phương trình trên có \(\Delta ' = {\left( { - 6} \right)^2} - 1.28 = 8 > 0 \)\(\Rightarrow \sqrt {\Delta '} = 2\sqrt 2 \) nên có hai nghiệm \(\left[ \begin{array}{l}{x_1} = 6 + 2\sqrt 2 \\{x_2} = 6 - 2\sqrt 2 \end{array} \right.\)
Vì \(u > v\) nên phải chọn \(u = 6 + 2\sqrt 2 ;v = 6 - 2\sqrt 2 \) .
LG b
u + v = 3, uv = 6
Phương pháp giải:
Ta sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\))
Giải chi tiết:
Hai số phải tìm là hai nghiệm của phương trình \({x^2} - 3x + 6 = 0\)
Phương trình trên có \(\Delta = {( - 3)^2} - 4.1.6 = - 15 < 0\) nên phương trình vô nghiệm.
Vậy không có hai số \(u,v\) thỏa mãn yêu cầu đề bài.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 48 trang 82 Vở bài tập toán 9 tập 2 timdapan.com"