Bài 40 trang 73 SGK Toán 7 tập 2
Giải bài 40 trang 73 SGK Toán 7 tập 2. Cho tam giác ABC cân tại A
Đề bài
Cho tam giác \(ABC\) cân tại \(A\). Gọi \(G\) là trọng tâm, \(I\) là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm \(A, G, I\) thẳng hàng.
Phương pháp giải - Xem chi tiết
Áp dụng tính chất ba đường phân giác trong tam giác và trọng tâm của tam giác.
Lời giải chi tiết
Gọi \(M, N\) lần lượt là trung điểm của \(BC\) và \(AC\).
Vì \(G\) là trọng tâm nên \(G\) nằm trên trung tuyến \(AM\) (1)
Vì \(I\) cách đều ba cạnh của tam giác nên \(I\) là giao điểm của ba đường phân giác trong của \(ΔABC\).
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
+) \(AM\) chung
+) \(AB=AC\) (Vì tam giác \(ABC\) cân tại \(A\))
+) \(BM=CM\) (Vì \(M\) là trung điểm của \(BC\))
\(\Rightarrow \Delta ABM = \Delta ACM\) (c.c.c)
\( \Rightarrow \widehat {BAM} = \widehat {CAM}\) (Hai góc tương ứng).
Do đó \(AM\) là tia phân giác \(\widehat {BAC}\)
Hay \(AM\) là trung tuyến đồng thời là đường phân giác trong của tam giác \(ABC\)
Do đó \(I\) nằm trên \(AM\) (2)
Từ (1) và (2) suy ra ba điểm \(A, G, I\) thẳng hàng (điều phải chứng minh).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 40 trang 73 SGK Toán 7 tập 2 timdapan.com"