Bài 40 trang 127 SGK Đại số 10 nâng cao

Giải bất phương trình và bất phương trình


Giải bất phương trình và bất phương trình

LG a

|x + 1| + |x – 1| = 4 (1)

Phương pháp giải:

Xét dấu các biểu thức dưới dấu giá trị tuyệt đối, từ đó phá dấu giá trị tuyệt đối giải phương trình thu được.

Lời giải chi tiết:

Ta có bảng:

i) Với \(x < -1\), ta có (1) \(⇔ - x – 1 – x + 1 = 4 \) \( \Leftrightarrow  - 2x = 4 \Leftrightarrow x =  - 2\) (nhận)

ii) Với \(-1 ≤ x ≤  1\), ta có: (1) \(⇔ x + 1 – x + 1 = 4 ⇔ 2 = 4\) (vô nghiệm)

iii) Với \(x > 1\), ta có (1) \(⇔ x + 1 + x – 1 = 4 \) \(\Leftrightarrow 2x = 4 \Leftrightarrow x = 2\) (nhận)

Vậy S = {-2, 2}


LG b

\({{|2x - 1|} \over {(x + 1)(x - 2)}} > {1 \over 2}\)

Phương pháp giải:

Phá dấu giá trị tuyệt đối, giải bất phương trình bằng cách lập bảng xét dấu.

Lời giải chi tiết:

Ta có:

i) Nếu \(x \le {1 \over 2}\) thì bất phương trình trở thành:

\(\eqalign{
& {{ - 2x + 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\cr& \Leftrightarrow {{2( - 2x + 1) - (x + 1)(x - 2)} \over {2(x + 1)(x - 2)}} > 0 \cr 
& \Leftrightarrow {{ - {x^2} - 3x + 4} \over {2(x + 1)(x - 2)}} > 0\cr & \Leftrightarrow {{(x - 1)(x + 4)} \over {2(x + 1)(x - 2)}} < 0 \cr} \)

Lập bảng xét dấu:

Từ bảng xét dấu ta thấy

\(\left[ \begin{array}{l}
- 4 < x < - 1\\
1 < x < 2
\end{array} \right.\)

Kết hợp \(x \le {1 \over 2}\) ta có: \(-4 < x < -1\).

ii) Nếu \(x > {1 \over 2}\) thì bất phương trình đã cho trở thành: \({{2x - 1} \over {(x + 1)(x - 2)}} > {1 \over 2}\)

Ta có:

\(\eqalign{
& {{2x - 1} \over {(x + 1)(x - 2)}} > {1 \over 2} \cr&\Leftrightarrow {{2(2x - 1) - (x + 1)(x - 2)} \over {2(x + 1)(x - 2)}} > 0 \cr 
& \Leftrightarrow {{x(x - 5)} \over {2(x + 1)(x - 2)}} < 0 \cr} \)

Lập bảng xét dấu trên nửa khoảng \(({1 \over 2}, + \infty )\)

Trong trường hợp này ta có: \(2 < x < 5\)

Vậy \(S = (-4, -1)  ∪ (2, 5)\)



Bài học liên quan

Từ khóa phổ biến