Bài 39 trang 10 SBT Hình học 12 Nâng cao
Giải bài 39 trang 10 sách bài tập Hình học 12 Nâng cao. Cho khối chóp S.ABCD ...
Đề bài
Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA=2a. Gọi B’, D’ lần lượt là hình chiếu của A trên SB và SD. Mặt phẳng \(\left( {AB'D'} \right)\) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’.
Lời giải chi tiết
Ta có\(AB' \bot SB,AB' \bot CB(\) do \(CB \bot \left( {SAB} \right)\))
\( \Rightarrow AB' \bot \left( {SBC} \right) \Rightarrow AB' \bot SC \;\;(1)\)
Tương tự \(AD' \bot SC\;\;\;(2)\)
Từ (1) và (2) suy ra
\(\eqalign{ & SC \bot \left( {AB'C'D'} \right) \cr & \Rightarrow SC \bot AC'. \cr} \)
Do tính đối xứng ta có
\({V_{S.AB'C'D'}} = 2{V_{S.AB'C'}}\)
Ta có
\(\eqalign{ & {{{V_{S.AB'C'}}} \over {{V_{S.ABC}}}} = {{SB'} \over {SB}}.{{SC'} \over {SC}} = {{SB'.SB} \over {S{B^2}}}.{{SC'.SC} \over {S{C^2}}} \cr & = {{S{A^2}} \over {S{B^2}}}.{{S{A^2}} \over {S{C^2}}} = {{4{a^2}} \over {5{a^2}}}.{{4{a^2}} \over {6{a^2}}} = {8 \over {15}}. \cr & {V_{S.ABC}} = {1 \over 3}.{{{a^2}} \over 2}.2a = {{{a^3}} \over 3}\cr& \Rightarrow {V_{S.AB'C'}} = {8 \over {15}}.{{{a^3}} \over 3} = {{8{a^3}} \over {45}} \cr & \Rightarrow {V_{S.AB'C'D'}} = {{16{a^3}} \over {45}}. \cr} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 39 trang 10 SBT Hình học 12 Nâng cao timdapan.com"