Bài 3 trang 115 SGK Toán 8 tập 1

Giải bài 3 trang 115 SGK Toán 8 tập 1. Cho hình thoi ABCD


Đề bài

Cho hình thoi \(ABCD\) có \(\widehat A = {60^0}\). Gọi \(E, F, G, H\) lần lượt là trung điểm của các cạnh \(AB, BC, CD, DA\). Chứng minh rằng đa giác \(EBFGDH\) là lục giác đều.

Phương pháp giải - Xem chi tiết

Áp dụng: 

- Hình thoi có tất cả các cạnh bằng nhau,

- Lục giác đều là hình có sáu cạnh bằng nhau và sáu góc bằng nhau.

Lời giải chi tiết

\(ABCD\) là hình thoi (giả thiết) và \(\widehat A = {60^0}\) (giả thiết)

Do đó \(AB = BC = CD = DA\); \(AB//DC;\,BC//AD\).

\(E,F,G,H\) lần lượt là trung điểm của \(AB,BC,CD,DA\) nên \(AE = EB = BF = FC = CG = GD\)\(\, = DH = HA\)

\(\widehat A + \widehat {ABC} = {180^0}\) (\(2\) góc trong cùng phía bù nhau)

\( \Rightarrow \widehat {ABC} = {180^0} - \widehat A = {180^0} - {60^0} \)\(= {120^0}\)

\( \Rightarrow \widehat {ABC} = \widehat {ADC} = {120^0}\) (tính chất hình thoi)

\(\Delta EAH\) là tam giác đều (vì tam giác cân có một góc \(60^0\))

\( \Rightarrow \widehat {AEH} = \widehat {AHE} = {60^0}\) (tính chất tam giác đều)

\(\left\{ \begin{array}{l}
\widehat {AEH} + \widehat {HEB} = {180^0}\\
\widehat {AHE} + \widehat {EHD} = {180^0}
\end{array} \right.\)  (hai góc kề bù)

\( \Rightarrow \widehat {HEB} = \widehat {EH{\rm{D}}} = {180^0} - {60^0} = {120^0}\)

 Tương tự: \(\widehat {BFG} = {120^0},\widehat{F GD} = {120^0}\)

Vậy đa giác \(EBFGDH\) có tất cả các góc bằng nhau, mặt khác \(EBFGDH\) cũng có tất cả các cạnh bằng nhau ( bằng nửa cạnh hình thoi)

Vậy \(EBFGDH\) là một lục giác đều (dấu hiệu nhận biết lục giác đều)



Từ khóa phổ biến