Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo
Tổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ...\) bằng:
Đề bài
Tổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ...\) bằng:
A. \(\frac{3}{4}\).
B. \(\frac{5}{4}\).
C. \(\frac{4}{3}\).
D. \(\frac{6}{5}\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1}\) và công bội \(q\): \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)
Lời giải chi tiết
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{4}\) nên: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ... = \frac{1}{{1 - \frac{1}{4}}} = \frac{4}{3}\)
Chọn C.
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạo timdapan.com"