Bài tập cuối chương III - SBT Toán 9 CD
Giải bài 42 trang 68 sách bài tập toán 9 - Cánh diều tập 1
Đưa thừa số vào dấu căn bậc hai của \(3\sqrt 5 \) ta được:
A. \(\sqrt {15} \)
B. 15
C. \(\sqrt {45} \)
D. 45
Giải bài 43 trang 68 sách bài tập toán 9 - Cánh diều tập 1
Giá trị của biểu thức \(\frac{1}{{\sqrt 3 + \sqrt 2 }} - \frac{1}{{\sqrt 3 - \sqrt 2 }}\) bằng:
A. 0
B. 4
C. \(2\sqrt 2 \)
D. \( - 2\sqrt 2 \)
Giải bài 44 trang 68 sách bài tập toán 9 - Cánh diều tập 1
Nếu \({x^3} = - 2\) thì \(x\) bằng:
A. -8
B. \(\sqrt 2 \)
C. \( - \sqrt[3]{2}\)
D. \(\sqrt[3]{2}\)
Giải bài 45 trang 68 sách bài tập toán 9 - Cánh diều tập 1
So sánh:
a) \(5\sqrt 5 \) và \(4\sqrt 3 \)
b) \(\sqrt {36 + 16} \) và \(\sqrt {36} + \sqrt {16} \)
c) \(\frac{1}{{\sqrt {60} }}\) và \(2\sqrt {\frac{1}{{15}}} \)
d) \(\sqrt 6 - \sqrt 2 \) và 1
Giải bài 46 trang 68 sách bài tập toán 9 - Cánh diều tập 1
Tốc độ lăn \(v(m/s)\) của vật thể có khối lượng m (kg) chịu tác động từ lực Ek được cho bởi công thức \(v = \sqrt {\frac{{2{E_k}}}{m}} \).
a) Tính tốc độ lăn của quả bóng nặng 3kg khi một người tác động lực Ek = 18J lên quả bóng.
b) Muốn lăn của quả bóng nặng 3kg với tốc độ 6m/s thì cần tác động lực bao nhiêu jun lên quả bóng đó?
Giải bài 47 trang 68 sách bài tập toán 9 - Cánh diều tập 1
Rút gọn biểu thức
a) \(\left( {5\sqrt {\frac{1}{5}} - \frac{1}{2}\sqrt {20} + \sqrt 5 } \right)\sqrt 5 \)
b) \(\left( {\sqrt {\frac{1}{7}} - \sqrt {\frac{9}{7}} + \sqrt 7 } \right):\sqrt 7 \)
c) \({\left( {\sqrt {\frac{2}{3}} - \sqrt {\frac{3}{2}} } \right)^2}\)
d) \(\frac{{\sqrt {{{312}^2} - {{191}^2}} }}{{\sqrt {503} }}\)
e) \(\sqrt {27.{{\left( {1 - \sqrt 3 } \right)}^4}} :3\sqrt {15} \)
g) \(\frac{{\sqrt[3]{{135}}}}{{\sqrt[3]{5}}} - \sqrt[3]{{54}}.\sqrt[3]{4}\)
Giải bài 48 trang 69 sách bài tập toán 9 - Cánh diều tập 1
Cho biểu thức \(A = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{\sqrt x - 1}}{{\sqrt x + 1}} - \frac{{3\sqrt x + 1}}{{x - 1}}\) với \(x \ge 0,x \ne 1\)
a) Rút gọn biểu thức A.
b) Tìm giá trị của biểu thức A tại \(x = 121\).
c) Tìm giá trị của \(x\) để \(A = \frac{1}{2}\).
d) Tìm giá trị của \(x\) để \(A = \sqrt x - 1\).
Giải bài 49 trang 69 sách bài tập toán 9 - Cánh diều tập 1
Cho biểu thức \(B = \frac{{x - 2}}{{x + 2\sqrt x }} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x + 2}}\) với \(x > 0\).
a) Rút gọn biểu thức B.
b) Tính giá trị biểu thức B tại \(x = 3 - 2\sqrt 2 .\)
c) Tìm giá trị của \(x \in N*\) để B nguyên.
Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1
Cho biểu thức \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\).
a) Rút gọn biểu thức C.
b) Tìm giá trị lớn nhất của C.
c) Tìm giá trị của \(x\) để C có giá trị là các số dương.
Giải bài 51 trang 69 sách bài tập toán 9 - Cánh diều tập 1
Tìm x, biết:
a) \(\frac{5}{3}\sqrt {15x} - \sqrt {15x} - 2 = \frac{1}{3}\sqrt {15x} \) với \(x \ge 0\).
b) \(\sqrt {9{x^2}} = \left| { - 18} \right|\) với \(x \ge 0\).
c) \({x^2} - 8 = 0\)
d) \(\sqrt {{x^2} - 49} - \sqrt {x - 7} = 0\) với \(x \ge 7\)