Lý thuyết Giải tam giác và ứng dụng thực tế
Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.
Giải tam giác là tìm số đo các cạnh và các góc chưa biết của tam giác.
1. Định lí cosin
Trong tam giác ABC:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\)
Hệ quả
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)
2. Định lí sin
Trong tam giác ABC: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)
(R là bán kính đường tròn ngoại tiếp tam giác ABC)
Hệ quả
\(a = 2R.\sin A;\quad b = 2R\sin B;\quad c = 2R\sin C\)
\(\sin A = \frac{a}{{2R}};\quad \sin B = \frac{b}{{2R}};\quad \sin C = \frac{c}{{2R}}.\)
3. Các công thức tính diện tích tam giác
1) \(S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\)
2) \(S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C\)
3) \(S = \frac{{abc}}{{4R}}\)
4) \(S = pr = \frac{{(a + b + c).r}}{2}\)
5) \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (Công thức Heron)
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết Giải tam giác và ứng dụng thực tế timdapan.com"