Lý thuyết Dấu của tam thức bậc hai - SGK Toán 10 Cánh diều
1. Định lí về dấu của tam thức bậc hai
1. Định lí về dấu của tam thức bậc hai
Cho tam thức bậc hai \(f(x) = a{x^2} + bx + c\) với \(a \ne 0,\Delta = {b^2} - 4ac.\)
+ \(\Delta < 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}\)
+ \(\Delta = 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}{\rm{\backslash }}\left\{ {\frac{{ - b}}{{2a}}} \right\}\)
+ \(\Delta < 0\): f(x) có 2 nghiệm \({x_1},{x_2}({x_1} < {x_2})\)
2. Ví dụ
Xét dấu của tam thức bậc hai: \(f(x) = 2{x^2} + 3x - 2\)
Giải:
\(\Delta = {3^2} - 4.2.( - 2) = 25 > 0\)
Tam thức bậc hai \(f(x) = 2{x^2} + 3x - 2\) có hai nghiệm phân biệt \({x_1} = - 2,{x_2} = \frac{1}{2}\) và hệ số \(a = 2 > 0\)
Ta có bảng xét dấu \(f(x)\) như sau:
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết Dấu của tam thức bậc hai - SGK Toán 10 Cánh diều timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết Dấu của tam thức bậc hai - SGK Toán 10 Cánh diều timdapan.com"