Luyện tập 6 trang 63 Tài liệu dạy – học Toán 8 tập 1

Giải bài tập Quy đồng


Đề bài

a) \({{x - 1} \over 2}\) và \({{{x^2}} \over {{x^2} - 16}}\) ;

b) \({{x + y} \over {{y^3} - 3{x^2}y + 3x{y^2} - {x^3}}}\) và \({1 \over {{x^2} - xy}}\)

Lời giải chi tiết

\(\eqalign{  & a)\,\,{x^2} - 16 = \left( {x - 4} \right)\left( {x + 4} \right)  \cr  & MTC = 2\left( {x - 4} \right)\left( {x + 4} \right)  \cr  & {{x - 1} \over 2} = {{\left( {x - 1} \right)\left( {x - 4} \right)\left( {x + 4} \right)} \over {2\left( {x - 4} \right)\left( {x + 4} \right)}}  \cr  & {{{x^2}} \over {{x^2} - 16}} = {{{x^2}} \over {\left( {x - 4} \right)\left( {x + 4} \right)}} = {{2{x^2}} \over {2\left( {x - 4} \right)\left( {x + 4} \right)}}  \cr  & b)\,\,{y^3} - 3x{y^2} + 3{x^2}y - {x^3} = {\left( {y - x} \right)^3}  \cr  & \,\,\,\,\,{x^2} - xy =  - x\left( {y - x} \right)  \cr  & MTC = x{\left( {y - x} \right)^3}  \cr  & {{x + y} \over {{y^3} - 3x{y^2} + 3{x^2}y - {x^3}}} = {{x + y} \over {{{\left( {y - x} \right)}^3}}} = {{x\left( {x + y} \right)} \over {x{{\left( {y - x} \right)}^3}}}  \cr  & {1 \over {{x^2} - xy}} = {1 \over { - x\left( {y - x} \right)}} = {{\left( { - 1} \right){{\left( {y - x} \right)}^2}} \over {x{{\left( {y - x} \right)}^3}}} = {{ - {{\left( {y - x} \right)}^2}} \over {x{{\left( {y - x} \right)}^3}}} \cr} \)



Từ khóa phổ biến