Giải mục 3 trang 100, 101 SGK Toán 10 tập 1 - Chân trời sáng tạo

Cho hai vectơ i, j vuông góc có cùng độ dài bằng 1. Phân tử sulfur dioxide SO2 có cấu tạo hình chữ V, góc liên kết OSO gần bằng 120


Thực hành 4

Cho hai vectơ \(\overrightarrow i ,\overrightarrow j \) vuông góc có cùng độ dài bằng 1.

a) Tính \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2};{\left( {\overrightarrow i  - \overrightarrow j } \right)^2};\left( {\overrightarrow i  + \overrightarrow j } \right)\left( {\overrightarrow i  - \overrightarrow j } \right)\).

b) Cho \(\overrightarrow a  = 2\overrightarrow i  + 2\overrightarrow j ,\overrightarrow b  = 3\overrightarrow i  - 3\overrightarrow j \). Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) và tính góc \(\left( {\overrightarrow a ,\overrightarrow b } \right)\)

Phương pháp giải:

Sử dụng các tính chất của tích vô hướng giữa các vectơ

Lời giải chi tiết:

a) Ta có hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \) vuông góc nên \(\overrightarrow i .\overrightarrow j  = 0\)

+) \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} + 2\overrightarrow i .\overrightarrow j  = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)

+) \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} - 2\overrightarrow i .\overrightarrow j  = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)

+) \(\left( {\overrightarrow i  + \overrightarrow j } \right)\left( {\overrightarrow i  - \overrightarrow j } \right) = {\left( {\overrightarrow i } \right)^2} - {\left( {\overrightarrow j } \right)^2} = {\left| {\overrightarrow i } \right|^2} - {\left| {\overrightarrow j } \right|^2} = 1 - 1 = 0\)

b) Sử dụng kết quả của câu a) ta có:

\(\overrightarrow a .\overrightarrow b  = \left( {2\overrightarrow i  + 2\overrightarrow j } \right).\left( {3\overrightarrow i  - 3\overrightarrow j } \right) = 2.3.\left( {\overrightarrow i  + \overrightarrow j } \right).\left( {\overrightarrow i  - \overrightarrow j } \right) = 6.0 = 0\)

\(\overrightarrow a .\overrightarrow b  = 0 \Rightarrow \overrightarrow a  \bot \overrightarrow b  \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)


Vận dụng 2

Phân tử sulfur dioxide \((S{O_2})\) có cấu tạo hình chữ V, góc liên kết \(\widehat {OSO}\) gần bằng \(120^\circ \). Người ta biểu diễn sự phân cực giữa nguyên tử S và nguyên tử O bằng các vectơ \(\overrightarrow {{\mu _1}} \)và \(\overrightarrow {{\mu _2}} \) có cùng phương với liên kết cộng hóa trị, có chiều từ nguyên tử S về mỗi nguyên tử O và có độ dài là 1,6 đơn vị (Hình 6). Cho biết vectơ tổng\(\overrightarrow \mu   = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _2}} \) được dùng để biểu diễn sự phân cực của cả phân tử \(\)SO2. Tính độ dài của \(\overrightarrow \mu  \).

Phương pháp giải:

Sử dụng kết quả của ví dụ 4 trang 101 \({c^2} = {a^2} + {b^2} - 2bc.\cos C\)

Lời giải chi tiết:

Từ điểm cuối của vectơ \(\overrightarrow {{\mu _1}} \) vẽ vectơ \(\overrightarrow {{\mu _3}}  = \overrightarrow {{\mu _2}} \)

Suy ra \(\overrightarrow \mu   = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _2}}  = \overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}}  \Rightarrow \left| {\overrightarrow \mu  } \right| = \left| {\overrightarrow {{\mu _1}}  + \overrightarrow {{\mu _3}} } \right|\)

Ta có: \(\left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _2}} } \right) = 120^\circ  \Rightarrow \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right) = 60^\circ \)

\( \Rightarrow {\left| {\overrightarrow \mu  } \right|^2} = {\left| {\overrightarrow {{\mu _1}} } \right|^2} + {\left| {\overrightarrow {{\mu _3}} } \right|^2} - 2\left| {\overrightarrow {{\mu _1}} } \right|\left| {\overrightarrow {{\mu _3}} } \right|\cos \left( {\overrightarrow {{\mu _1}} ,\overrightarrow {{\mu _3}} } \right)\)

          \( = 1,{6^2} + 1,{6^2} - 2.1,6.1,6.\cos 60^\circ  = \frac{{64}}{{25}}\)

\( \Rightarrow \left| {\overrightarrow \mu  } \right| = \sqrt {\frac{{64}}{{25}}}  = 1,6\)

Vậy độ dài của \(\overrightarrow \mu  \) là 1,6 đơn vị



Bài học liên quan

Từ khóa phổ biến