Giải mục 2 trang 8, 9 SGK Toán 9 tập 2 - Cùng khám phá

Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó: a) 2x – x2 = 0; b) \({x^2} - 6x + 9 = \frac{1}{2}\)


HĐ2

Trả lời câu hỏi Hoạt động 2 trang 8 SGK Toán 9 Cùng khám phá

Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó:

a) 2x – x2 = 0;

b) \({x^2} - 6x + 9 = \frac{1}{2}\)

Phương pháp giải:

Phân tích thành nhân tử rồi giải phương trình.

Lời giải chi tiết:

a) 2x – x2 = 0

x(2 – x) = 0

\(\begin{array}{l}\left[ {\begin{array}{*{20}{c}}{x = 0}\\{2 - x = 0}\end{array}} \right.\\\left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\end{array}\)

Vậy phương trình có nghiệm là x = 0 và x = 2.

b) \({x^2} - 6x + 9 = \frac{1}{2}\)

\(\begin{array}{l}{x^2} - 6x + 9 = \frac{1}{2}\\{\left( {x - 3} \right)^2} = \frac{1}{2}\\\left[ {\begin{array}{*{20}{c}}{x - 3 = \frac{1}{{\sqrt 2 }}}\\{x - 3 =  - \frac{1}{{\sqrt 2 }}}\end{array}} \right.\\\left[ {\begin{array}{*{20}{c}}{x = \frac{{6 + \sqrt 2 }}{2}}\\{x = \frac{{6 + \sqrt 2 }}{2}}\end{array}} \right.\end{array}\)

Vậy phương trình có 2 nghiệm là \(x = \frac{{6 + \sqrt 2 }}{2}\);\(x = \frac{{6 - \sqrt 2 }}{2}\).


LT2

Trả lời câu hỏi Luyện tập 2 trang 8 SGK Toán 9 Cùng khám phá

Giải các phương trình sau:

a) 3x2 = - 4x;

b) \(2{x^2} - 3 = 0\)

Phương pháp giải:

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết:

a) 3x2 = - 4x;

3x2 + 4x = 0

x(3x + 4) = 0

x = 0 hoặc 3x + 4 = 0

x = 0 hoặc x = \(\frac{{ - 4}}{3}\).

Vậy phương trình có hai nghiệm x1 = 0, x2 = \(\frac{{ - 4}}{3}\).

b) \(2{x^2} - 3 = 0\)

\(\begin{array}{l}2{x^2} = 3\\{x^2} = \frac{3}{2}\end{array}\)

x = \(\frac{{\sqrt 6 }}{2}\) hoặc \(x =  - \frac{{\sqrt 6 }}{2}\)

Vậy phương trình có hai nghiệm x1 = \(\frac{{\sqrt 6 }}{2}\), x2 =\( - \frac{{\sqrt 6 }}{2}\).


VD1

Trả lời câu hỏi Vận dụng 1 trang 8 SGK Toán 9 Cùng khám phá

Một con cá heo nhảy lên khỏi mặt nước. Sau t(s) kể từ khi nhảy lên, cá heo ở độ cao h = 6t – 5t2 (m) so với mặt nước. Sau bao lâu con cá heo ấy lại quay trở về mặt nước?

Phương pháp giải:

Con cá heo quay trở về mặt nước tương ứng với h = 0

Giải phương trình 6t – 5t2 = 0 để tìm t.

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết:

Thay h = 0 vào h = 6t – 5t2  (t > 0) ta có:

6t – 5t2 = 0

t(6 – 5t) = 0

t = 0 (L)  hoặc t = \(\frac{6}{5} = 1,2\)(TM)

Vậy sau 1,2 giây con cá heo ấy lại quay trở về mặt nước.


LT3

Trả lời câu hỏi Luyện tập 3 trang 9 SGK Toán 9 Cùng khám phá

Giải phương trình \(2{x^2} - 5x + 2 = 0\).

Phương pháp giải:

Dựa vào cách giải phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) theo các cách sau:

Đưa về phương trình tích

Biến đổi vế trái của phương trình về dạng a(x + h)2 = k với h, k là các hằng số.

Lời giải chi tiết:

\(\begin{array}{l}2{x^2} - 5x + 2 = 0\\2{x^2} - 5x =  - 2\\{x^2} - \frac{5}{2}x + {\left( {\frac{5}{2}} \right)^2} =  - 1 + {\left( {\frac{5}{2}} \right)^2}\\{\left( {x - \frac{5}{2}} \right)^2} = \frac{{17}}{4}\end{array}\)

\(x - \frac{5}{2} = \frac{{\sqrt {17} }}{2}\) hoặc \(x - \frac{5}{2} =  - \frac{{\sqrt {17} }}{2}\)

\(x = \frac{{\sqrt {17} }}{2} + \frac{5}{2}\) hoặc \(x =  - \frac{{\sqrt {17} }}{2} + \frac{5}{2}\)

Vậy phương trình có hai nghiệm x1 = \(\frac{{5 + \sqrt {17} }}{2}\), x2 =\(\frac{{5 - \sqrt {17} }}{2}\).



Bài học liên quan

Từ khóa phổ biến