Giải bài tập 6.13 trang 14 SGK Toán 9 tập 2 - Cùng khám phá

Lượng nhiên liệu tiêu thụ y (l/100 km) của một số loại ô tô phụ thuộc vào tốc độ di chuyển x (km/h) theo hàm số \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\) với \(20 \le x \le 140\). Hỏi ô tô đi với tốc độ nào thì lượng nhiên liệu tiêu thụ là 7 l/100 km?


Đề bài

Lượng nhiên liệu tiêu thụ y (l/100 km) của một số loại ô tô phụ thuộc vào tốc độ di chuyển x (km/h) theo hàm số \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\) với \(20 \le x \le 140\). Hỏi ô tô đi với tốc độ nào thì lượng nhiên liệu tiêu thụ là 7 l/100 km?

Phương pháp giải - Xem chi tiết

Thay y = 7 vào phương trình rồi giải phương trình.

Dựa vào: Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta  = {b^2} - 4ac\).

- Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{ - b + \sqrt \Delta  }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta  }}{{2a}}\);

- Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \frac{b}{{2a}}\);

- Nếu \(\Delta \) < 0 thì phương trình vô nghiệm.

Lời giải chi tiết

Thay y = 7 vào phương trình \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\), ta có:

\(\begin{array}{l}\frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4} = 7\\\frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{45}}{4} = 0\end{array}\)

Ta có \(\Delta  = {\left( {\frac{{ - 3}}{8}} \right)^2} - 4.\left( {\frac{1}{{320}}} \right).\left( {\frac{{45}}{4}} \right) = 0\)

Phương trình có nghiệm kép \({x_1} = {x_2} = 60\)

Vậy ô tô đi với tốc độ 60 (km/h) thì lượng nhiên liệu tiêu thụ là 7l/100 km.

Bài giải tiếp theo



Bài học liên quan

Từ khóa phổ biến