Giải mục 2 trang 68 SGK Toán 9 tập 1 - Cánh diều

So sánh: a. \(\sqrt {16.0,25} \) và \(\sqrt {16} .\sqrt {0,25} \); b. \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \) với a, b là hai số không âm.


HĐ2

Trả lời câu hỏi Hoạt động 2 trang 68 SGK Toán 9 Cánh diều

So sánh:

a. \(\sqrt {16.0,25} \) và \(\sqrt {16} .\sqrt {0,25} \);

b. \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \) với a, b là hai số không âm.

Phương pháp giải:

Dựa vào kiến thức căn bậc hai của một tích để so sánh.

Lời giải chi tiết:

a. \(\sqrt {16.0,25}  = \sqrt {16} .\sqrt {0,25} \).

b. \(\sqrt {a.b}  = \sqrt a .\sqrt b \).


LT2

Trả lời câu hỏi Luyện tập 2 trang 68 SGK Toán 9 Cánh diều

Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:

a. \(\sqrt {9x_{}^4} \);

b. \(\sqrt {3a_{}^3} .\sqrt {27a} \) với \(a > 0\).

Phương pháp giải:

Dựa vào kiến thức “Với các biểu thức A, B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

Lời giải chi tiết:

a. \(\sqrt {9x_{}^4}  = \sqrt 9 .\sqrt {x_{}^4}  = 3.\left| {x_{}^2} \right| = 3x_{}^2\).

b. \(\sqrt {3a_{}^3} .\sqrt {27a}  = \sqrt {3a_{}^3.27a}  = \sqrt {81a_{}^4}  = \sqrt {81} .\sqrt {a_{}^4}  = 3.\left| {a_{}^2} \right| = 3a_{}^2\).



Bài học liên quan

Từ khóa phổ biến