Giải mục 2 trang 49 SGK Toán 9 tập 2 - Cánh diều

a) Nêu khái niệm đồ thị của hàm số \(y = f(x)\). b) Xét hàm số \(y = 2{x^2}\). Hãy thực hiện các hoạt động sau: - Tìm giá trị của y tương ứng với giá trị của x trong bảng sau: - Trên mặt phẳng tọa độ Oxy, xác định các điểm có hoành độ và tung độ như trong bảng giá trị trên. - Quan sát Hình 1, vẽ đường cong như ở Hình 1 đi qua 5 điểm A, B, O, C, D. Đường cong đó được gọi là đường parabol và đường parabol đó là đồ thị của hàm số\(y = 2{x^2}\).


HĐ2

Trả lời câu hỏi Hoạt động 2 trang 49 SGK Toán 9 Cánh diều

a)   Nêu khái niệm đồ thị của hàm số \(y = f(x)\).

b)  Xét hàm số \(y = 2{x^2}\). Hãy thực hiện các hoạt động sau:          

- Tìm giá trị của y tương ứng với giá trị của x trong bảng sau: 

- Trên mặt phẳng tọa độ Oxy, xác định các điểm có hoành độ và tung độ như trong bảng giá trị trên.

- Quan sát Hình 1, vẽ đường cong như ở Hình 1 đi qua 5 điểm A, B, O, C, D. Đường cong đó được gọi là đường parabol và đường parabol đó là đồ thị của hàm số \(y = 2{x^2}\).

c)   Xét hàm số \(y =  - 2{x^2}\). Hãy thực hiện các hoạt động sau:

- Tìm giá trị của y tương ứng với giá trị của x trong bảng sau:

- Trên mặt phẳng tọa độ Oxy, xác định các điểm có hoành độ và tung độ như trong bảng giá trị trên.

- Quan sát Hình 2, vẽ vẽ đường cong như ở Hình 2 đi qua 5 điểm M, N, O, P, Q. Đường cong đó được gọi là đường parabol và đường parabol đó là đồ thị của hàm số \(y =  - 2{x^2}\).

Phương pháp giải:

a)   Nhớ lại định nghĩa đồ thị hàm số lớp 8.

b), c) Bước 1: Thay từng giá trị x vào hàm số \(y = 2{x^2}\) ta tìm được giá trị y tương ứng.

Bước 2: Vẽ hệ trục tọa độ Oxy và biểu diễn tọa độ từng điểm trên mặt phẳng tọa độ.

Bước 3: Nối các điểm trên ta được đồ thị của hàm số.

Lời giải chi tiết:

a)   Đồ thị của hàm số \(y = f(x)\) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng \((x;f(x))\) trên mặt phẳng tọa độ.

b)   

Các điểm A(-2;8), B(-1;2), O(0;0), C(1;2), D(2;8)

Đồ thị của hàm số \(y = 2{x^2}\):

c) 

Các điểm A(-2;-8), B(-1;-2), O(0;0), C(1;-2), D(2;-8)

Đồ thị của hàm số \(y =  - 2{x^2}\):


LT3

Trả lời câu hỏi Luyện tập 3 trang 49 SGK Toán 9 Cánh diều

Vẽ đồ thị của hàm số \(y =  - 3{x^2}\)

Phương pháp giải:

- Lập bảng giá trị của y tương ứng với giá trị của x  giá trị của x (lấy ít nhất 5 điểm).

- Vẽ đồ thị hàm số đi qua 5 điểm đó, ta được parabol cần tìm.

Lời giải chi tiết:

Ta có bảng giá trị:

Vẽ các điểm \(A( - 1; - 3),B( - \frac{1}{3}; - \frac{1}{3}),O(0;0),D(\frac{1}{3}; - \frac{1}{3}),E(1; - 3)\) thuộc đồ thị của hàm số \(y =  - 3{x^2}\)trong mặt phẳng tọa độ Oxy.

Vẽ đường parabol đi qua 5 điểm A,B,O,D,E ta nhận được đồ thị của hàm số \(y =  - 3{x^2}\).


HĐ3

Trả lời câu hỏi Hoạt động 3 trang 49 SGK Toán 9 Cánh diều

Quan sát đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) ở Hình 4, hãy nêu nhận xét về vị trí cặp điểm E và H, F và G đối với trục Oy.

Phương pháp giải:

Chú ý về tính đối xứng của các cặp điểm so với trục Oy.

Lời giải chi tiết:

Điểm E đối xứng với H, F đối xứng với G qua Oy.



Từ khóa phổ biến