Giải bài tập 4 trang 51 SGK Toán 9 tập 2 - Cánh diều
Cho hàm số \(y = a{t^2}\) biểu thị quãng đường (đơn vị: mét) mà một chiếc xe đua đi được trong khoảng thời gian t (giây). Giả sử một chiếc xe đua đi được 125m sau khoảng thời gian là 5 giây. a) Tìm hệ số a. b) Vẽ đồ thị của hàm số.
Đề bài
Cho hàm số \(y = a{t^2}\) biểu thị quãng đường (đơn vị: mét) mà một chiếc xe đua đi được trong khoảng thời gian t (giây). Giả sử một chiếc xe đua đi được 125m sau khoảng thời gian là 5 giây.
a) Tìm hệ số a.
b) Vẽ đồ thị của hàm số.
Phương pháp giải - Xem chi tiết
a) Thay \(y = 125,t = 5\) vào hàm số \(y = a{t^2}\) để tìm a.
b) Xác định 5 điểm thuộc đồ thị hàm số, sau đó vẽ đường cong parabol đi qua 5 điểm đó.
Lời giải chi tiết
a) Thay \(y = 125,t = 5\) vào hàm số \(y = a{t^2}\) ta được:
\(125 = a{.5^2} \Leftrightarrow a = 5\)
Hàm số có dạng \(y = 5{t^2}\).
b) Ta có bảng:
Đồ thị hàm số \(y = 5{t^2}\) là một parabol đi qua 5 điểm \(\left( { - 1;5} \right),(\frac{{ - 1}}{5};\frac{1}{5});\left( {0;0} \right),\left( {\frac{1}{5};\frac{1}{5}} \right),\left( {1;5} \right)\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 4 trang 51 SGK Toán 9 tập 2 - Cánh diều timdapan.com"