Giải bài tập 4 trang 51 SGK Toán 9 tập 2 - Cánh diều

Cho hàm số \(y = a{t^2}\) biểu thị quãng đường (đơn vị: mét) mà một chiếc xe đua đi được trong khoảng thời gian t (giây). Giả sử một chiếc xe đua đi được 125m sau khoảng thời gian là 5 giây. a) Tìm hệ số a. b) Vẽ đồ thị của hàm số.


Đề bài

Cho hàm số \(y = a{t^2}\) biểu thị quãng đường (đơn vị: mét) mà một chiếc xe đua đi được trong khoảng thời gian t (giây). Giả sử một chiếc xe đua đi được 125m sau khoảng thời gian là 5 giây.

a)  Tìm hệ số a.

b)  Vẽ đồ thị của hàm số.

Phương pháp giải - Xem chi tiết

a)  Thay \(y = 125,t = 5\) vào hàm số \(y = a{t^2}\) để tìm a.

b)  Xác định 5 điểm thuộc đồ thị hàm số, sau đó vẽ đường cong parabol đi qua 5 điểm đó.

Lời giải chi tiết

a)   Thay \(y = 125,t = 5\) vào hàm số \(y = a{t^2}\) ta được:

\(125 = a{.5^2} \Leftrightarrow a = 5\)

Hàm số có dạng \(y = 5{t^2}\).

b)  Ta có bảng:

Đồ thị hàm số \(y = 5{t^2}\) là một parabol đi qua 5 điểm \(\left( { - 1;5} \right),(\frac{{ - 1}}{5};\frac{1}{5});\left( {0;0} \right),\left( {\frac{1}{5};\frac{1}{5}} \right),\left( {1;5} \right)\)



Từ khóa phổ biến