Giải mục 1 trang 34, 35 SGK Toán 8 tập 1 - Kết nối tri thức
Với hai số a,b bất kì, thực hiện phép tính
HĐ1
Với hai số a,b bất kì, thực hiện phép tính
\(\left( {a + b} \right){\left( {a + b} \right)^2}\)
Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^3}\) và \({a^3} + 3{a^2}b + 3a{b^2} + {b^3}\).
Phương pháp giải:
Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Lời giải chi tiết:
\(\begin{array}{l}\left( {a + b} \right){\left( {a + b} \right)^2} = \left( {a + b} \right).\left( {{a^2} + 2ab + {b^2}} \right) = a.{a^2} + a.2ab + a.{b^2} + b.{a^2} + b.2ab + b.{b^2}\\ = {a^3} + 2{a^2}b + a{b^2} + {a^2}b + 2a{b^2} + {b^3}\\ = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\end{array}\)
Luyện tập 1
1. Khai triển:
a) \({\left( {x + 3} \right)^3}\)
b) \({\left( {x + 2y} \right)^3}\)
2. Rút gọn biểu thức \({\left( {2x + y} \right)^3} - 8{x^3} - {y^3}\)
Phương pháp giải:
Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)
Lời giải chi tiết:
1.
a) \({\left( {x + 3} \right)^3} = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {x^3} + 9{x^2} + 27x + 27\)
b) \({\left( {x + 2y} \right)^3} = {x^3} + 3.{x^2}.2y + 3.x.{\left( {2y} \right)^2} + {\left( {3y} \right)^3} = {x^3} + 6{x^2}y + 12x{y^2} + 27{y^3}\)
2.
\(\begin{array}{l}{\left( {2x + y} \right)^3} - 8{x^3} - {y^3} = {\left( {2x} \right)^3} + 3.{\left( {2x} \right)^2}.y + 3.2x.{y^2} + {y^3} - 8{x^3} - {y^3}\\ = 8{x^2} + 12{x^2}y + 6x{y^2} + {y^3} - 8{x^3} - {y^3}\\ = \left( {8{x^2} - 8{x^2}} \right) + 12{x^2}y + 6x{y^2} + \left( {{y^3} - {y^3}} \right)\\ = 12{x^2}y + 6x{y^2}\end{array}\)
Luyện tập 2
Viết biểu thức \({x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\) dưới dạng lập phương của một tổng.
Phương pháp giải:
Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)
Lời giải chi tiết:
\(\begin{array}{l}{x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\\ = {x^3} + 3.{x^2}.3y + 3.x.{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\\ = {\left( {x + 3y} \right)^3}\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải mục 1 trang 34, 35 SGK Toán 8 tập 1 - Kết nối tri thức timdapan.com"