Giải bài 2.8 trang 36 SGK Toán 8 tập 1 - Kết nối tri thức

Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.


Đề bài

Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.

a)      \(27 + 54x + 36{x^2} + 8{x^3}\).

b)      \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3}\).

Phương pháp giải - Xem chi tiết

Sử dụng các hằng đẳng thức đáng nhớ để tìm ra dạng lập phương của một tổng hoặc một hiệu của các biểu thức đó.

a. \( {a}^3 + 3.{a}^2.b + 3.{a}.{{b}^2} + {{b}^3} = {\left( {a+b} \right)^3} \)

 b. \({ {a}^3 - 3.{a}^2.b + 3.{a}.{{b}^2} - {{b}^3} = \left( {a-b} \right)^3} \)

Lời giải chi tiết

a)      \(27 + 54x + 36{x^2} + 8{x^3} = {3^3} + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} + {\left( {2x} \right)^3} = {\left( {3 + 2x} \right)^3}\)

b)      \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3} = {\left( {4x} \right)^3} - 3.{\left( {4x} \right)^2}.3y + 3.4x.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {4x - 3y} \right)^3}\)



Bài học liên quan

Từ khóa phổ biến