Giải bài tập 5.37 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức
Trong không gian Oxyz, phương trình đường thẳng d đi qua \(I\left( {2;1; - 3} \right)\) và vuông góc với mặt phẳng (P): \(x - 2y + z - 3 = 0\) là A. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 3}}{1}\). B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 3}}{1}\). C. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 3}}{1}\). D. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\).
Đề bài
Trong không gian Oxyz, phương trình đường thẳng d đi qua \(I\left( {2;1; - 3} \right)\) và vuông góc với mặt phẳng (P): \(x - 2y + z - 3 = 0\) là
A. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 3}}{1}\).
B. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 3}}{1}\).
C. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 3}}{1}\).
D. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình chính tắc của đường thẳng để viết phương trình đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) với a, b, c là các số khác 0. Hệ phương trình \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).
Lời giải chi tiết
Mặt phẳng (P) có một vectơ pháp tuyến là: \(\overrightarrow {{n_P}} \left( {1; - 2;1} \right)\).
Vì đường thẳng d vuông góc với mặt phẳng (P) nên d nhận \(\overrightarrow {{n_P}} \left( {1; - 2;1} \right)\) là một vectơ chỉ phương. Mà đường thẳng d đi qua \(I\left( {2;1; - 3} \right)\) nên phương trình d là: \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 3}}{1}\)
Chọn A
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 5.37 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức timdapan.com"